AoPS Community

APMO 2000

www.artofproblemsolving.com/community/c4117
by shobber

1 Compute the sum: $\sum_{i=0}^{101} \frac{x_{i}^{3}}{1-3 x_{i}+3 x_{i}^{2}}$ for $x_{i}=\frac{i}{101}$.
2 Find all permutations $a_{1}, a_{2}, \ldots, a_{9}$ of $1,2, \ldots, 9$ such that

$$
a_{1}+a_{2}+a_{3}+a_{4}=a_{4}+a_{5}+a_{6}+a_{7}=a_{7}+a_{8}+a_{9}+a_{1}
$$

and

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}=a_{7}^{2}+a_{8}^{2}+a_{9}^{2}+a_{1}^{2}
$$

3 Let $A B C$ be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side $B C$. Let Q and P be the points in which the perpendicular at N to $N A$ meets $M A$ and $B A$, respectively. And O the point in which the perpendicular at P to $B A$ meets $A N$ produced.

Prove that $Q O$ is perpendicular to $B C$.
4 Let n, k be given positive integers with $n>k$. Prove that:

$$
\frac{1}{n+1} \cdot \frac{n^{n}}{k^{k}(n-k)^{n-k}}<\frac{n!}{k!(n-k)!}<\frac{n^{n}}{k^{k}(n-k)^{n-k}}
$$

5 Given a permutation $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of the sequence $0,1, \ldots, n$. A transportation of a_{i} with a_{j} is called legal if $a_{i}=0$ for $i>0$, and $a_{i-1}+1=a_{j}$. The permutation $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is called regular if after a number of legal transportations it becomes $(1,2, \ldots, n, 0)$.
For which numbers n is the permutation ($1, n, n-1, \ldots, 3,2,0$) regular?

