

AoPS Community

APMO 2000

www.artofproblemsolving.com/community/c4117 by shobber

1	Compute the sum: $\sum_{i=0}^{101} rac{x_i^3}{1-3x_i+3x_i^2}$ for $x_i=rac{i}{101}$.	
2	Find all permutations a_1, a_2, \ldots, a_9 of $1, 2, \ldots, 9$ such that	
		$a_1 + a_2 + a_3 + a_4 = a_4 + a_5 + a_6 + a_7 = a_7 + a_8 + a_9 + a_1$
	and	$a_1^2 + a_2^2 + a_3^2 + a_4^2 = a_4^2 + a_5^2 + a_6^2 + a_7^2 = a_7^2 + a_8^2 + a_9^2 + a_1^2$
3	Let ABC be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side BC . Let Q and P be the points in which the perpendicular at N to NA meets MA and BA , respectively. And O the point in which the perpendicular at P to	

Prove that QO is perpendicular to BC.

BA meets AN produced.

4 Let n, k be given positive integers with n > k. Prove that:

$$\frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k (n-k)^{n-k}}$$

5 Given a permutation $(a_0, a_1, ..., a_n)$ of the sequence 0, 1, ..., n. A transportation of a_i with a_j is called legal if $a_i = 0$ for i > 0, and $a_{i-1} + 1 = a_j$. The permutation $(a_0, a_1, ..., a_n)$ is called regular if after a number of legal transportations it becomes (1, 2, ..., n, 0). For which numbers n is the permutation (1, n, n - 1, ..., 3, 2, 0) regular?

Act of Problem Solving is an ACS WASC Accredited School.