## APMO 2004

www.artofproblemsolving.com/community/c4121
by shobber, Arne

1 Determine all finite nonempty sets $S$ of positive integers satisfying

$$
\frac{i+j}{(i, j)} \text { is an element of } \mathrm{S} \text { for all } \mathrm{i}, \mathrm{j} \text { in } \mathrm{S},
$$

where $(i, j)$ is the greatest common divisor of $i$ and $j$.
2 Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $A B C$. Prove that the area of one of the triangles $\mathrm{AOH}, \mathrm{BOH}$ and COH is equal to the sum of the areas of the other two.

3 Let a set $S$ of 2004 points in the plane be given, no three of which are collinear. Let $\mathcal{L}$ denote the set of all lines (extended indefinitely in both directions) determined by pairs of points from the set. Show that it is possible to colour the points of $S$ with at most two colours, such that for any points $p, q$ of $S$, the number of lines in $\mathcal{L}$ which separate $p$ from $q$ is odd if and only if $p$ and $q$ have the same colour.

Note: A line $\ell$ separates two points $p$ and $q$ if $p$ and $q$ lie on opposite sides of $\ell$ with neither point on $\ell$.
$4 \quad$ For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that

$$
\left\lfloor\frac{(n-1)!}{n(n+1)}\right\rfloor
$$

is even for every positive integer $n$.
5 Prove that the inequality

$$
\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9(a b+b c+c a)
$$

holds for all positive reals $a, b, c$.

