Aopsonline Art of Problem Solving

AoPS Community

2011 APMO

APMO 2011

www.artofproblemsolving.com/community/c4128 by WakeUp

- 1 Let a, b, c be positive integers. Prove that it is impossible to have all of the three numbers $a^2 + b + c, b^2 + c + a, c^2 + a + b$ to be perfect squares.
- **2** Five points A_1, A_2, A_3, A_4, A_5 lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_i A_j A_k$ can take where i, j, k are distinct integers between 1 and 5.
- **3** Let *ABC* be an acute triangle with $\angle BAC = 30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line *AC* at *B*₁ and *B*₂, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line *AB* at *C*₁ and *C*₂, respectively. Suppose that the circles with diameters *B*₁*B*₂ and *C*₁*C*₂ meet inside the triangle *ABC* at point *P*. Prove that $\angle BPC = 90^{\circ}$.
- 4 Let *n* be a fixed positive odd integer. Take m + 2 **distinct** points $P_0, P_1, \ldots, P_{m+1}$ (where *m* is a non-negative integer) on the coordinate plane in such a way that the following three conditions are satisfied:

1) $P_0 = (0,1), P_{m+1} = (n+1,n)$, and for each integer $i, 1 \le i \le m$, both x- and y- coordinates of P_i are integers lying in between 1 and n (1 and n inclusive).

2) For each integer $i, 0 \le i \le m$, $P_i P_{i+1}$ is parallel to the *x*-axis if *i* is even, and is parallel to the *y*-axis if *i* is odd.

3) For each pair i, j with $0 \le i < j \le m$, line segments $P_i P_{i+1}$ and $P_j P_{j+1}$ share at most 1 point.

Determine the maximum possible value that m can take.

5 Determine all functions $f : \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of all real numbers, satisfying the following two conditions:

1) There exists a real number M such that for every real number x, f(x) < M is satisfied.

2) For every pair of real numbers x and y,

$$f(xf(y)) + yf(x) = xf(y) + f(xy)$$

is satisfied.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.