Art of Problem Solving

APMO 2011

www.artofproblemsolving.com/community/c4128
by WakeUp

1 Let a, b, c be positive integers. Prove that it is impossible to have all of the three numbers $a^{2}+b+c, b^{2}+c+a, c^{2}+a+b$ to be perfect squares.

2 Five points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_{i} A_{j} A_{k}$ can take where i, j, k are distinct integers between 1 and 5 .

3 Let $A B C$ be an acute triangle with $\angle B A C=30^{\circ}$. The internal and external angle bisectors of $\angle A B C$ meet the line $A C$ at B_{1} and B_{2}, respectively, and the internal and external angle bisectors of $\angle A C B$ meet the line $A B$ at C_{1} and C_{2}, respectively. Suppose that the circles with diameters $B_{1} B_{2}$ and $C_{1} C_{2}$ meet inside the triangle $A B C$ at point P. Prove that $\angle B P C=90^{\circ}$.

4 Let n be a fixed positive odd integer. Take $m+2$ distinct points $P_{0}, P_{1}, \ldots, P_{m+1}$ (where m is a non-negative integer) on the coordinate plane in such a way that the following three conditions are satisfied:

1) $P_{0}=(0,1), P_{m+1}=(n+1, n)$, and for each integer $i, 1 \leq i \leq m$, both x - and y-coordinates of P_{i} are integers lying in between 1 and n (1 and n inclusive).
2) For each integer $i, 0 \leq i \leq m, P_{i} P_{i+1}$ is parallel to the x-axis if i is even, and is parallel to the y-axis if i is odd.
3) For each pair i, j with $0 \leq i<j \leq m$, line segments $P_{i} P_{i+1}$ and $P_{j} P_{j+1}$ share at most 1 point.
Determine the maximum possible value that m can take.
5 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{R} is the set of all real numbers, satisfying the following two conditions:
4) There exists a real number M such that for every real number $x, f(x)<M$ is satisfied.
5) For every pair of real numbers x and y,

$$
f(x f(y))+y f(x)=x f(y)+f(x y)
$$

is satisfied.

