Art of Problem Solving

APMO 2014

www.artofproblemsolving.com/community/c4131
by v_Enhance

1 For a positive integer m denote by $S(m)$ and $P(m)$ the sum and product, respectively, of the digits of m. Show that for each positive integer n, there exist positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying the following conditions:

$$
S\left(a_{1}\right)<S\left(a_{2}\right)<\cdots<S\left(a_{n}\right) \text { and } S\left(a_{i}\right)=P\left(a_{i+1}\right) \quad(i=1,2, \ldots, n)
$$

(We let $a_{n+1}=a_{1}$.)
Problem Committee of the Japan Mathematical Olympiad Foundation
2 Let $S=\{1,2, \ldots, 2014\}$. For each non-empty subset $T \subseteq S$, one of its members is chosen as its representative. Find the number of ways to assign representatives to all non-empty subsets of S so that if a subset $D \subseteq S$ is a disjoint union of non-empty subsets $A, B, C \subseteq S$, then the representative of D is also the representative of one of A, B, C.
Warut Suksompong, Thailand
3 Find all positive integers n such that for any integer k there exists an integer a for which $a^{3}+$ $a-k$ is divisible by n.

Warut Suksompong, Thailand

$4 \quad$ Let n and b be positive integers. We say n is b-discerning if there exists a set consisting of n different positive integers less than b that has no two different subsets U and V such that the sum of all elements in U equals the sum of all elements in V.
(a) Prove that 8 is 100 -discerning.
(b) Prove that 9 is not 100 -discerning.

Senior Problems Committee of the Australian Mathematical Olympiad Committee
$5 \quad$ Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc $A B$ of circle ω (M lies inside Ω). A chord $M P$ of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_{P} be the tangent line to ω at P, and let ℓ_{Q} be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_{P}, ℓ_{Q} and $A B$ is tangent to Ω.

Ilya Bogdanov, Russia and Medeubek Kungozhin, Kazakhstan

