AoPS Community

Malaysia National Olympiad 2010

www.artofproblemsolving.com/community/c4132
by parmenides51, MathSolver94

- Bongsu

1 A square with side length 2 cm is placed next to a square with side length 6 cm , as shown in the diagram. Find the shaded area, in cm^{2}. https://cdn.artofproblemsolving.com/attachments/5/7/ceb4912a6e73ca751113b2b5c92cbfdbb6e0c png

2 A student wrote down the following sequence of numbers : the first number is 1 , the second number is 2 , and after that, each number is obtained by adding together all the previous numbers. Determine the 12th number in the sequence.

3 Adam has RM2010 in his bank account. He donates RM10 to charity every day. His first donation is on Monday. On what day will he donate his last RM10?

4 In the diagram, $\angle A O B=\angle B O C$ and $\angle C O D=\angle D O E=\angle E O F$. Given that $\angle A O D=82^{\circ}$ and $\angle B O E=68^{\circ}$. Find $\angle A O F$. https://cdn.artofproblemsolving.com/attachments/b/2/deba6cd740adbf033ad884fff8e13cd21d9c png

5 A circle and a square overlap such that the overlapping area is 50% of the area of the circle, and is 25% of the area of the square, as shown in the figure. Find the ratio of the area of the square outside the circle to the area of the whole figure. https://cdn.artofproblemsolving.com/attachments/e/2/c209a95f457dbf3c46f66f82c0a45cc4b5c1c png

6 Find the number of different pairs of positive integers (a, b) for which $a+b \leq 100$ and

$$
\frac{a+\frac{1}{b}}{\frac{1}{a}+b}=10
$$

7 Let $A B C$ be a triangle in which $A B=A C$. A point I lies inside the triangle such that $\angle A B I=$ $\angle C B I$ and $\angle B A I=\angle C A I$. Prove that

$$
\angle B I A=90^{\circ}+\frac{\angle C}{2}
$$

8 Find the last digit of

$$
7^{1} \times 7^{2} \times 7^{3} \times \cdots \times 7^{2009} \times 7^{2010}
$$

9 A number of runners competed in a race. When Ammar finished, there were half as many runners who had finished before him compared to the number who finished behind him. Julia was the 10th runner to finish behind Ammar. There were twice as many runners who had finished before Julia compared to the number who finished behind her. How many runners were there in the race?

- Muda

1 Triangles $O A B, O B C, O C D$ are isoceles triangles with $\angle O A B=\angle O B C=\angle O C D=\angle 90^{\circ}$. Find the area of the triangle $O A B$ if the area of the triangle $O C D$ is 12 .

2 A meeting is held at a round table. It is known that 7 women have a woman on their right side, and 12 women have a man on their right side. It is also known that 75

3 Let $\gamma=\alpha \times \beta$ where

$$
\alpha=999 \cdots 9
$$

(2010 ' 9 ') and

$$
\beta=444 \cdots 4
$$

(2010 '4')
Find the sum of digits of γ.
4 A square $A B C D$ has side length 1 . A circle passes through the vertices of the square. Let P, Q, R, S be the midpoints of the arcs which are symmetrical to the arcs $A B, B C, C D, D A$ when reflected on sides $A B, B C, C D, D A$, respectively. The area of square $P Q R S$ is $a+b \sqrt{2}$, where a and b are integers. Find the value of $a+b$. https://cdn.artofproblemsolving.com/attachments/4/3/fc9e1bd71b26cfd9ff076db7aa0a396ae64e7 png

5 Find the number of triples of nonnegative integers (x, y, z) such that

$$
x^{2}+2 x y+y^{2}-z^{2}=9
$$

6 A two-digit integer is divided by the sum of its digits. Find the largest remainder that can occur.
7 Let $A B C$ be a triangle in which $A B=A C$ and let I be its incenter. It is known that $B C=$ $A B+A I$. Let D be a point on line $B A$ extended beyond A such that $A D=A I$. Prove that $D A I C$ is a cyclic quadrilateral.

AoPS Community

8 For any number x, let $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. A sequence a_{1}, a_{2}, \cdots is given, where

$$
a_{n}=\left\lfloor\sqrt{2 n}+\frac{1}{2}\right\rfloor .
$$

How many values of k are there such that $a_{k}=2010$?
$9 \quad$ Let m and n be positive integers such that $2^{n}+3^{m}$ is divisible by 5 . Prove that $2^{m}+3^{n}$ is divisible by 5 .

- \quad Sulung

1 In the diagram, congruent rectangles $A B C D$ and $D E F G$ have a common vertex D. Sides $B C$ and $E F$ meet at H. Given that $D A=D E=8, A B=E F=12$, and $B H=7$. Find the area of $A B H E D$. https://cdn.artofproblemsolving.com/attachments/f/b/7225fa89097e7b20ea246b3aa920d2464080 png

2 Find x such that

$$
2010^{\log _{10} x}=11^{\log _{10}(1+3+5+\cdots+4019)}
$$

3 Let $N=\overline{a b c}$ be a three-digit number. It is known that we can construct an isoceles triangle with a, b and c as the length of sides. Determine how many possible three-digit number N there are.
($N=\overline{a b c}$ means that a, b and c are digits of N, and not $N=a \times b \times c$.)
4 A semicircle has diameter $X Y$. A square $P Q R S$ with side length 12 is inscribed in the semicircle with P and S on the diameter. Square $S T U V$ has T on $R S, U$ on the semicircle, and V on $X Y$. What is the area of STUV?

5 Let n be an integer greater than 1. If all digits of $97 n$ are odd, find the smallest possible value of n.

6 Find the smallest integer $k \geq 3$ with the property that it is possible to choose two of the number $1,2, \ldots, k$ in such a way that their product is equal to the sum of the remaining $k-2$ numbers.

7 A line segment of length 1 is given on the plane. Show that a line segment of length $\sqrt{2010}$ can be constructed using only a straightedge and a compass.

8 Show that

$$
\log _{a} b c+\log _{b} c a+\log _{c} a b \geq 4\left(\log _{a b} c+\log _{b c} a+\log _{c a} b\right)
$$

for all a, b, c greater than 1 .

9 Show that there exist integers m and n such that

$$
\frac{m}{n}=\sqrt[3]{\sqrt{50}+7}-\sqrt[3]{\sqrt{50}-7}
$$

