

AoPS Community

2003 Purple Comet Problems

Purple Comet Problems 2003

www.artofproblemsolving.com/community/c4133 by youarebad, Binomial-theorem, djmathman

- **1** In eight years Henry will be three times the age that Sally was last year. Twenty five years ago their ages added to 83. How old is Henry now?
- **2** What is the smallest number that could be the date of the first Saturday after the second Monday following the second Thursday of a month?
- **3** What is the largest integer whose prime factors add to 14?
- 4 The lengths of the diagonals of a rhombus are, in inches, two consecutive integers. The area of the rhombus is 210 sq. in. Find its perimeter, in inches.
- **5** Let *a*, *b*, and *c* be nonzero real numbers such that $a + \frac{1}{b} = 5$, $b + \frac{1}{c} = 12$, and $c + \frac{1}{a} = 13$. Find $abc + \frac{1}{abc}$.

6 Evaluate:

$$\frac{1}{\log_2(\frac{1}{6})} - \frac{1}{\log_3(\frac{1}{6})} - \frac{1}{\log_4(\frac{1}{6})}$$

- **7** Find the smallest n such that every subset of $\{1, 2, 3, ..., 2004\}$ with n elements contains at least two elements that are relatively prime.
- 8 Let ABCDEFGHIJKL be a regular dodecagon. Find $\frac{AB}{AF} + \frac{AF}{AB}$.
- 9 Let f be a real-valued function of real and positive argument such that $f(x) + 3xf(\frac{1}{x}) = 2(x+1)$ for all real numbers x > 0. Find f(2003).
- **10** How many gallons of a solution which is 15% alcohol do we have to mix with a solution that is 35% alcohol to make 250 gallons of a solution that is 21% alcohol?
- **11** If

$$\frac{1}{1+2} + \frac{1}{1+2+3} + \ldots + \frac{1}{1+2+\ldots+20} = \frac{m}{n}$$

where m and n are positive integers with no common divisor, find m + n.

12 How many triangles appear in the diagram below:

AoPS Community

2003 Purple Comet Problems

- **13** Let P(x) be a polynomial such that, when divided by x-2, the remainder is 3 and, when divided by x-3, the remainder is 2. If, when divided by (x-2)(x-3), the remainder is ax+b, find a^2+b^2 .
- 14 Let *a*, *b*, *c* be real numbers such that $a^2 2 = 3b c$, $b^2 + 4 = 3 + a$, and $c^2 + 4 = 3a b$. Find $a^4 + b^4 + c^4$.

15 Let *r* be a real number such that $\sqrt[3]{r} - \frac{1}{\sqrt[3]{r}} = 2$. Find $r^3 - \frac{1}{r^3}$.

16 Find the largest real number *x* such that

$$\left(\frac{x}{x-1}\right)^2 + \left(\frac{x}{x+1}\right)^2 = \frac{325}{144}.$$

17 Given that $3\sin x + 4\cos x = 5$, where x is in $(0, \frac{\pi}{2})$, find $2\sin x + \cos x + 4\tan x$.

- **18** A circle radius 320 is tangent to the inside of a circle radius 1000. The smaller circle is tangent to a diameter of the larger circle at a point *P*. How far is the point *P* from the outside of the larger circle?
- **19** Let x_1 and x_2 be the roots of the equation $x^2 + 3x + 1 = 0$. Compute

$$\left(\frac{x_1}{x_2+1}\right)^2 + \left(\frac{x_2}{x_1+1}\right)^2$$

AoPS Community

2003 Purple Comet Problems

20	In how many ways can we form three teams of four players each from a group of 12 participants?
21	Let $a_n = \sqrt{1 + (1 - \frac{1}{n})^2} + \sqrt{1 + (1 + \frac{1}{n})^2}, n \ge 1$. Evaluate $\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_{20}}$.
22	In $\triangle ABC$, max $\{\angle A, \angle B\} = \angle C + 30^{\circ}$ and $\frac{R}{r} = \sqrt{3} + 1$, where R is the radius of the circumcircle and r is the radius of the incircle. Find $\angle C$ in degrees.
23	For each positive integer m and n define function $f(m, n)$ by $f(1, 1) = 1$, $f(m+1, n) = f(m, n) + m$ and $f(m, n + 1) = f(m, n) - n$. Find the sum of all the values of p such that $f(p, q) = 2004$ for some q .
24	In $\triangle ABC$, $\angle A = 30^{\circ}$ and $AB = AC = 16$ in. Let D lie on segment BC such that $\frac{DB}{DC} = \frac{2}{3}$. Let E and F be the orthogonal projections of D onto AB and AC , respectively. Find $DE + DF$ in inches.
25	Given that $(1 + \tan 1^\circ)(1 + \tan 2^\circ) \dots (1 + \tan 45^\circ) = 2^n$, find <i>n</i> .

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.