AoPS Community

Rioplatense Mathematical Olympiad, Level 32004

www.artofproblemsolving.com/community/c4148
by Shu

Day 1

1 Find all polynomials $P(x)$ with real coefficients such that

$$
x P\left(\frac{y}{x}\right)+y P\left(\frac{x}{y}\right)=x+y
$$

for all nonzero real numbers x and y.
2 Find the smallest integer n such that each subset of $\{1,2, \ldots, 2004\}$ with n elements has two distinct elements a and b for which $a^{2}-b^{2}$ is a multiple of 2004 .

3 In a convex hexagon $A B C D E F$, triangles $A C E$ and $B D F$ have the same circumradius R. If triangle $A C E$ has inradius r, prove that

$$
\operatorname{Area}(A B C D E F) \leq \frac{R}{r} \cdot \operatorname{Area}(A C E)
$$

Day 2

1 How many integers $n>1$ are there such that n divides $x^{13}-x$ for every positive integer x ?
2 A collection of cardboard circles, each with a diameter of at most 1 , lie on a 5×8 table without overlapping or overhanging the edge of the table. A cardboard circle of diameter 2 is added to the collection. Prove that this new collection of cardboard circles can be placed on a 7×7 table without overlapping or overhanging the edge.

3 Consider a partition of $\{1,2, \ldots, 900\}$ into 30 subsets $S_{1}, S_{2}, \ldots, S_{30}$ each with 30 elements. In each S_{k}, we paint the fifth largest number blue. Is it possible that, for $k=1,2, \ldots, 30$, the sum of the elements of S_{k} exceeds the sum of the blue numbers?

