

AoPS Community

2004 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2004

www.artofproblemsolving.com/community/c4148 by Shu

Day 1

1 Find all polynomials P(x) with real coefficients such that

$$xP\left(\frac{y}{x}\right) + yP\left(\frac{x}{y}\right) = x + y$$

for all nonzero real numbers x and y.

- **2** Find the smallest integer *n* such that each subset of $\{1, 2, ..., 2004\}$ with *n* elements has two distinct elements *a* and *b* for which $a^2 b^2$ is a multiple of 2004.
- **3** In a convex hexagon *ABCDEF*, triangles *ACE* and *BDF* have the same circumradius *R*. If triangle *ACE* has inradius *r*, prove that

$$\operatorname{Area}(ABCDEF) \leq \frac{R}{r} \cdot \operatorname{Area}(ACE).$$

Day 2

-	
1	How many integers $n > 1$ are there such that n divides $x^{13} - x$ for every positive integer x ?
2	A collection of cardboard circles, each with a diameter of at most 1, lie on a 5×8 table without overlapping or overhanging the edge of the table. A cardboard circle of diameter 2 is added to the collection. Prove that this new collection of cardboard circles can be placed on a 7×7 table without overlapping or overhanging the edge.
3	Consider a partition of $\{1, 2,, 900\}$ into 30 subsets $S_1, S_2,, S_{30}$ each with 30 elements. In each S_k , we paint the fifth largest number blue. Is it possible that, for $k = 1, 2,, 30$, the sum of the elements of S_k exceeds the sum of the blue numbers?

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.