Art of Problem Solving

AoPS Community

Rioplatense Mathematical Olympiad, Level 32005

www.artofproblemsolving.com/community/c4149
by Shu, cuenca

Day 1

1 Find all numbers n that can be expressed in the form $n=k+2\lfloor\sqrt{k}\rfloor+2$ for some nonnegative integer k.

2 In trapezoid $A B C D$, the sum of the lengths of the bases $A B$ and $C D$ is equal to the length of the diagonal $B D$. Let M denote the midpoint of $B C$, and let E denote the reflection of C about the line $D M$. Prove that $\angle A E B=\angle A C D$.

3 Find the largest positive integer n not divisible by 10 which is a multiple of each of the numbers obtained by deleting two consecutive digits (neither of them in the first or last position) of n. (Note: n is written in the usual base ten notation.)

Day 2

1 Let P be a point inside triangle $A B C$ and let R denote the circumradius of triangle $A B C$. Prove that

$$
\frac{P A}{A B \cdot A C}+\frac{P B}{B C \cdot B A}+\frac{P C}{C A \cdot C B} \geq \frac{1}{R} .
$$

2 Consider all finite sequences of positive real numbers each of whose terms is at most 3 and the sum of whose terms is more than 100. For each such sequence, let S denote the sum of the subsequence whose sum is the closest to 100 , and define the defect of this sequence to be the value $|S-100|$. Find the maximum possible value of the defect.
$3 \quad$ Let k be a positive integer. Show that for all $n>k$ there exist convex figures F_{1}, \ldots, F_{n} and F such that there doesn't exist a subset of k elements from F_{1}, \ldots, F_{n} and F is covered for this elements, but F is covered for every subset of $k+1$ elements from $F_{1}, F_{2}, \ldots ., F_{n}$.

