AoPS Community

Rioplatense Mathematical Olympiad, Level 32009

www.artofproblemsolving.com/community/c4152
by Shu

Day 1 December 7th

1 Find all pairs (a, b) of real numbers with the following property:
Given any real numbers c and d, if both of the equations $x^{2}+a x+1=c$ and $x^{2}+b x+1=d$ have real roots, then the equation $x^{2}+(a+b) x+1=c d$ has real roots.

2 Let $A, B, C, D, E, F, G, H, I$ be nine points in space such that $A B C D E, A B F G H$, and $G F C D I$ are each regular pentagons with side length 1 . Determine the lengths of the sides of triangle EHI.

3 Call a permutation of the integers $(1,2, \ldots, n)[i] d$-ordered[//i] if it does not contains a decreasing subsequence of length d. Prove that for every $d=2,3, \ldots, n$, the number of d-ordered permutations of $(1,2, \ldots, n)$ is at most $(d-1)^{2 n}$.

Day 2 December 8th

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x y)=\max \{f(x+y), f(x) f(y)\}
$$

for all real numbers x and y.
2 Find all pairs (a, b) of integers with $a>1$ and $b>1$ such that a divides $b+1$ and b divides $a^{3}-1$.

3 Alice and Bob play the following game. It begins with a set of 10001×2 rectangles. A move consists of choosing two rectangles (a rectangle may consist of one or several 1×2 rectangles combined together) that share a common side length and combining those two rectangles into one rectangle along those sides sharing that common length. The first player who cannot make a move loses. Alice moves first. Describe a winning strategy for Bob.

