

AoPS Community

2010 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2010

www.artofproblemsolving.com/community/c4153

by Shu

Day 1 December 7th

- Suppose *a*, *b*, *c*, and *d* are distinct positive integers such that *a^b* divides *b^c*, *b^c* divides *c^d*, and *c^d* divides *d^a*.
 (a) Is it possible to determine which of the numbers *a*, *b*, *c*, *d* is the smallest?
 (b) Is it possible to determine which of the numbers *a*, *b*, *c*, *d* is the largest?
 - **2** Acute triangle *ABP*, where *AB* > *BP*, has altitudes *BH*, *PQ*, and *AS*. Let *C* denote the intersection of lines *QS* and *AP*, and let *L* denote the intersection of lines *HS* and *BC*. If HS = SL and *HL* is perpendicular to *BC*, find the value of $\frac{SL}{SC}$.
 - **3** Find all the functions $f : \mathbb{N} \to \mathbb{R}$ that satisfy

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{N}$ satisfying $10^6 - \frac{1}{10^6} < \frac{x}{y} < 10^6 + \frac{1}{10^6}$.

Note: \mathbb{N} denotes the set of positive integers and \mathbb{R} denotes the set of real numbers.

Day 2 December 8th

- 1 Let $r_2, r_3, \ldots, r_{1000}$ denote the remainders when a positive odd integer is divided by $2, 3, \ldots, 1000$, respectively. It is known that the remainders are pairwise distinct and one of them is 0. Find all values of k for which it is possible that $r_k = 0$.
- **2** Find the minimum and maximum values of $S = \frac{a}{b} + \frac{c}{d}$ where *a*, *b*, *c*, *d* are positive integers satisfying a + c = 20202 and b + d = 20200.
- 3 Alice and Bob play the following game. To start, Alice arranges the numbers 1, 2, ..., n in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's *turn* consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number k at most k times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer n, determine who has a winning strategy.

Art of Problem Solving is an ACS WASC Accredited School.