Art of Problem Solving

AoPS Community

2010 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32010

www.artofproblemsolving.com/community/c4153
by Shu

Day 1 December 7th

1 Suppose a, b, c, and d are distinct positive integers such that a^{b} divides b^{c}, b^{c} divides c^{d}, and c^{d} divides d^{a}.
(a) Is it possible to determine which of the numbers a, b, c, d is the smallest?
(b) Is it possible to determine which of the numbers a, b, c, d is the largest?

2 Acute triangle $A B P$, where $A B>B P$, has altitudes $B H, P Q$, and $A S$. Let C denote the intersection of lines $Q S$ and $A P$, and let L denote the intersection of lines $H S$ and $B C$. If $H S=S L$ and $H L$ is perpendicular to $B C$, find the value of $\frac{S L}{S C}$.
$3 \quad$ Find all the functions $f: \mathbb{N} \rightarrow \mathbb{R}$ that satisfy

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{N}$ satisfying $10^{6}-\frac{1}{10^{6}}<\frac{x}{y}<10^{6}+\frac{1}{10^{6}}$.
Note: \mathbb{N} denotes the set of positive integers and \mathbb{R} denotes the set of real numbers.
Day 2 December 8th
1 Let $r_{2}, r_{3}, \ldots, r_{1000}$ denote the remainders when a positive odd integer is divided by $2,3, \ldots, 1000$, respectively. It is known that the remainders are pairwise distinct and one of them is 0 . Find all values of k for which it is possible that $r_{k}=0$.

2 Find the minimum and maximum values of $S=\frac{a}{b}+\frac{c}{d}$ where a, b, c, d are positive integers satisfying $a+c=20202$ and $b+d=20200$.

3 Alice and Bob play the following game. To start, Alice arranges the numbers $1,2, \ldots, n$ in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's turn consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number k at most k times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer n, determine who has a winning strategy.

