Art of Problem Solving

AoPS Community

2013 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32013

www.artofproblemsolving.com/community/c4154
by Leicich, MexicOMM

Day 1
1 Let a, b, c, d be real positive numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=1$. Prove that $(1-a)(1-$ b) $(1-c)(1-d) \geq a b c d$.

2 Let $A B C D$ be a square, and let E and F be points in $A B$ and $B C$ respectively such that $B E=B F$. In the triangle $E B C$, let N be the foot of the altitude relative to $E C$. Let G be the intersection between $A D$ and the extension of the previously mentioned altitude. $F G$ and $E C$ intersect at point P, and the lines $N F$ and $D C$ intersect at point T. Prove that the line $D P$ is perpendicular to the line $B T$.

3 A division of a group of people into various groups is called k-regular if the number of groups is less or equal to k and two people that know each other are in different groups.
Let A, B, and C groups of people such that there are is no person in A and no person in B that know each other. Suppose that the group $A \cup C$ has an a-regular division and the group $B \cup C$ has a b-regular division.
For each a and b, determine the least possible value of k for which it is guaranteed that the group $A \cup B \cup C$ has a k-regular division.

Day 2

4 Two players A and B play alternatively in a convex polygon with $n \geq 5$ sides. In each turn, the corresponding player has to draw a diagonal that does not cut inside the polygon previously drawn diagonals. A player loses if after his turn, one quadrilateral is formed such that its two diagonals are not drawn. A starts the game.
For each positive integer n, find a winning strategy for one of the players.
5 Find all positive integers n for which there exist two distinct numbers of n digits, $\overline{a_{1} a_{2} \ldots a_{n}}$ and $\overline{b_{1} b_{2} \ldots b_{n}}$, such that the number of $2 n$ digits $\overline{a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{n}}$ is divisible by $\overline{b_{1} b_{2} \ldots b_{n} a_{1} a_{2} \ldots a_{n}}$.

6 Let $A B C$ be an acute scalene triangle, H its orthocenter and G its geocenter. The circumference with diameter $A H$ cuts the circumcircle of $B H C$ in $A^{\prime}\left(A^{\prime} \neq H\right)$. Points B^{\prime} and C^{\prime} are defined similarly. Show that the points $A^{\prime}, B^{\prime}, C^{\prime}$, and G lie in one circumference.

