

AoPS Community

2013 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 3 2013 www.artofproblemsolving.com/community/c4154

by Leicich, MexicOMM

Day 1

1	Let a, b, c, d be real positive numbers such that $a^2 + b^2 + c^2 + d^2 = 1$. Prove that $(1 - a)(1 - b)(1 - c)(1 - d) \ge abcd$.
2	Let $ABCD$ be a square, and let E and F be points in AB and BC respectively such that $BE = BF$. In the triangle EBC , let N be the foot of the altitude relative to EC . Let G be the intersection between AD and the extension of the previously mentioned altitude. FG and EC intersect at point P , and the lines NF and DC intersect at point T . Prove that the line DP is perpendicular to the line BT .
3	A division of a group of people into various groups is called <i>k</i> -regular if the number of groups is less or equal to <i>k</i> and two people that know each other are in different groups. Let <i>A</i> , <i>B</i> , and <i>C</i> groups of people such that there are is no person in <i>A</i> and no person in <i>B</i> that know each other. Suppose that the group $A \cup C$ has an <i>a</i> -regular division and the group $B \cup C$ has a <i>b</i> -regular division. For each <i>a</i> and <i>b</i> , determine the least possible value of <i>k</i> for which it is guaranteed that the group $A \cup B \cup C$ has a <i>k</i> -regular division.
Day 2	
4	Two players A and B play alternatively in a convex polygon with $n \ge 5$ sides. In each turn, the corresponding player has to draw a diagonal that does not cut inside the polygon previously drawn diagonals. A player loses if after his turn, one quadrilateral is formed such that its two diagonals are not drawn. A starts the game. For each positive integer n , find a winning strategy for one of the players.
5	Find all positive integers n for which there exist two distinct numbers of n digits, $\overline{a_1a_2a_n}$ and $\overline{b_1b_2b_n}$, such that the number of $2n$ digits $\overline{a_1a_2a_nb_1b_2b_n}$ is divisible by $\overline{b_1b_2b_na_1a_2a_n}$.
6	Let ABC be an acute scalene triangle, H its orthocenter and G its geocenter. The circumference with diameter AH cuts the circumcircle of BHC in A' ($A' \neq H$). Points B' and C' are defined similarly. Show that the points A' , B' , C' , and G lie in one circumference.

AOPSOnline AOPSAcademy AOPS