AoPS Community

Turkey Junior National Olympiad 2000

www.artofproblemsolving.com/community/c4160
by xeroxia

1 Let $A B C$ be a triangle with $\angle B A C=90^{\circ}$. Construct the square $B D E C$ such as A and the square are at opposite sides of $B C$. Let the angle bisector of $\angle B A C$ cut the sides [$B C$] and [$D E]$ at F and G, respectively. If $|A B|=24$ and $|A C|=10$, calculate the area of quadrilateral $B D G F$.

2 Find the least positive integer n such that 15 divides the product

$$
a_{1} a_{2} \ldots a_{15}\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{15}^{n}\right)
$$

, for every positive integers $a_{1}, a_{2}, \ldots, a_{15}$.
$3 \quad f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the equation

$$
f(x) f(y)-a f(x y)=x+y
$$

, for every real numbers x, y. Find all possible real values of a.

