AoPS Community

9th RMM 2017

www.artofproblemsolving.com/community/c416676
by randomusername, IstekOlympiadTeam

- \quad Day 1 (February 24, 2017)

1 (a) Prove that every positive integer n can be written uniquely in the form

$$
n=\sum_{j=1}^{2 k+1}(-1)^{j-1} 2^{m_{j}},
$$

where $k \geq 0$ and $0 \leq m_{1}<m_{2} \cdots<m_{2 k+1}$ are integers.
This number k is called weight of n.
(b) Find (in closed form) the difference between the number of positive integers at most 2^{2017} with even weight and the number of positive integers at most 2^{2017} with odd weight.

2 Determine all positive integers n satisfying the following condition: for every monic polynomial P of degree at most n with integer coefficients, there exists a positive integer $k \leq n$ and $k+1$ distinct integers $x_{1}, x_{2}, \cdots, x_{k+1}$ such that

$$
P\left(x_{1}\right)+P\left(x_{2}\right)+\cdots+P\left(x_{k}\right)=P\left(x_{k+1}\right)
$$

Note. A polynomial is monic if the coefficient of the highest power is one.
3 Let n be an integer greater than 1 and let X be an n-element set. A non-empty collection of subsets A_{1}, \ldots, A_{k} of X is tight if the union $A_{1} \cup \cdots \cup A_{k}$ is a proper subset of X and no element of X lies in exactly one of the $A_{i} \mathrm{~s}$. Find the largest cardinality of a collection of proper nonempty subsets of X, no non-empty subcollection of which is tight.
Note. A subset A of X is proper if $A \neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

- \quad Day 2 (February 25, 2017)

4 In the Cartesian plane, let G_{1} and G_{2} be the graphs of the quadratic functions $f_{1}(x)=p_{1} x^{2}+$ $q_{1} x+r_{1}$ and $f_{2}(x)=p_{2} x^{2}+q_{2} x+r_{2}$, where $p_{1}>0>p_{2}$. The graphs G_{1} and G_{2} cross at distinct points A and B. The four tangents to G_{1} and G_{2} at A and B form a convex quadrilateral which has an inscribed circle. Prove that the graphs G_{1} and G_{2} have the same axis of symmetry.
$5 \quad$ Fix an integer $n \geq 2$. An $n \times n$ sieve is an $n \times n$ array with n cells removed so that exactly one cell is removed from every row and every column. A stick is a $1 \times k$ or $k \times 1$ array for any positive integer k. For any sieve A, let $m(A)$ be the minimal number of sticks required to partition A. Find all possible values of $m(A)$, as A varies over all possible $n \times n$ sieves.

Palmer Mebane

6 Let $A B C D$ be any convex quadrilateral and let P, Q, R, S be points on the segments $A B, B C, C D$, and $D A$, respectively. It is given that the segments $P R$ and $Q S$ dissect $A B C D$ into four quadrilaterals, each of which has perpendicular diagonals. Show that the points P, Q, R, S are concyclic.

