AoPS Community

Turkey Junior National Olympiad 2013

www.artofproblemsolving.com/community/c4173
by crazyfehmy

1 Let x, y, z be real numbers satisfying $x+y+z=0$ and $x^{2}+y^{2}+z^{2}=6$. Find the maximum value of

$$
|(x-y)(y-z)(z-x)|
$$

2 Find all prime numbers p, q, r satisfying the equation

$$
p^{4}+2 p+q^{4}+q^{2}=r^{2}+4 q^{3}+1
$$

3 Let $A B C$ be a triangle such that $A C>A B$. A circle tangent to the sides $A B$ and $A C$ at D and E respectively, intersects the circumcircle of $A B C$ at K and L. Let X and Y be points on the sides $A B$ and $A C$ respectively, satisfying

$$
\frac{A X}{A B}=\frac{C E}{B D+C E} \quad \text { and } \quad \frac{A Y}{A C}=\frac{B D}{B D+C E}
$$

Show that the lines $X Y, B C$ and $K L$ are concurrent.
4 Player A places an odd number of boxes around a circle and distributes 2013 balls into some of these boxes. Then the player B chooses one of these boxes and takes the balls in it. After that the player A chooses half of the remaining boxes such that none of two are consecutive and take the balls in them. If player A guarantees to take k balls, find the maximum possible value of k.

