AoPS Community

Turkey Junior National Olympiad 2014

www.artofproblemsolving.com/community/c4174
by bcp123

1 Prove that for positive reals a, b, c so that $a+b+c+a b c=4$,

$$
\left(1+\frac{a}{b}+c a\right)\left(1+\frac{b}{c}+a b\right)\left(1+\frac{c}{a}+b c\right) \geq 27
$$

holds.
2 Determine the minimum possible amount of distinct prime divisors of $19^{4 n}+4$, for a positive integer n.

3 There are 2014 balls with 106 different colors, 19 of each color. Determine the least possible value of n so that no matter how these balls are arranged around a circle, one can choose n consecutive balls so that amongst them, there are 53 balls with different colors.
$4 \quad A B C$ is an acute triangle with orthocenter H. Points D and E lie on segment $B C$. Circumcircle of $\triangle B H C$ instersects with segments $A D, A E$ at P and Q, respectively. Prove that if $B D^{2}+$ $C D^{2}=2 D P \cdot D A$ and $B E^{2}+C E^{2}=2 E Q \cdot E A$, then $B P=C Q$.

