AoPS Community

Mexico National Olympiad 2009

www.artofproblemsolving.com/community/c4177
by codyj

Day 1

1 In $\triangle A B C$, let D be the foot of the altitude from A to $B C$. A circle centered at D with radius $A D$ intersects lines $A B$ and $A C$ at P and Q, respectively. Show that $\triangle A Q P \sim \triangle A B C$.

2 In boxes labeled $0,1,2, \ldots$, we place integers according to the following rules:

- If p is a prime number, we place it in box 1 .
- If a is placed in box m_{a} and b is placed in box m_{b}, then $a b$ is placed in the box labeled $a m_{b}+b m_{a}$. Find all positive integers n that are placed in the box labeled n.

3 Let a, b, and c be positive numbers satisfying $a b c=1$. Show that

$$
\frac{a^{3}}{a^{3}+2}+\frac{b^{3}}{b^{3}+2}+\frac{c^{3}}{c^{3}+2} \geq 1 \text { and } \frac{1}{a^{3}+2}+\frac{1}{b^{3}+2}+\frac{1}{c^{3}+2} \leq 1
$$

Day 2

1 Let $n>1$ be an odd integer, and let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct real numbers. Let M be the maximum of these numbers and m the minimum. Show that it is possible to choose the signs of the expression $s= \pm a_{1} \pm a_{2} \pm \cdots \pm a_{n}$ so that

$$
m<s<M
$$

2 Consider a triangle $A B C$ and a point M on side $B C$. Let P be the intersection of the perpendiculars from M to $A B$ and from B to $B C$, and let Q be the intersection of the perpendiculars from M to $A C$ and from C to $B C$. Show that $P Q$ is perpendicular to $A M$ if and only if M is the midpoint of $B C$.

3 At a party with n people, it is known that among any 4 people, there are either 3 people who all know one another or 3 people none of which knows another. Show that the n people can be separated into two rooms, so that everyone in one room knows one another and no two people in the other room know each other.

