

AoPS Community

2010 Mexico National Olympiad

Mexico National Olympiad 2010

www.artofproblemsolving.com/community/c4178 by codyj

Day 1

1	Find all triplets of natural numbers (a, b, c) that satisfy the equation $abc = a + b + c + 1$.	
2	In each cell of an $n \times n$ board is a lightbulb. Initially, all of the lights are off. Each move consists of changing the state of all of the lights in a row or of all of the lights in a column (off lights are turned on and on lights are turned off).	
	Show that if after a certain number of moves, at least one light is on, then at this moment at least n lights are on.	
3	Let C_1 and C_2 be externally tangent at a point A . A line tangent to C_1 at B intersects C_2 at C and D ; then the segment AB is extended to intersect C_2 at a point E . Let F be the midpoint of CD that does not contain E , and let H be the intersection of BF with C_2 . Show that CD , AF , and EH are concurrent.	

Day 2

1 Let *n* be a positive integer. In an $n \times 4$ table, each row is equal to

2 0	1	0
-----	---	---

A *change* is taking three consecutive boxes in the same row with different digits in them and changing the digits in these boxes as follows:

$$0 \rightarrow 1$$
, $1 \rightarrow 2$, $2 \rightarrow 0$.

For example, a row 2 0 1 0 can be changed to the row 0 1 2 0 but not to 2 1 2 1 because 0, 1, and 0 are not distinct.

Changes can be applied as often as wanted, even to items already changed. Show that for n < 12, it is not possible to perform a finite number of changes so that the sum of the elements in each column is equal.

AoPS Community

2010 Mexico National Olympiad

- **2** Let *ABC* be an acute triangle with $AB \neq AC$, *M* be the median of *BC*, and *H* be the orthocenter of $\triangle ABC$. The circumcircle of *B*, *H*, and *C* intersects the median *AM* at *N*. Show that $\angle ANH = 90^{\circ}$.
- **3** Let *p*, *q*, and *r* be distinct positive prime numbers. Show that if

$$pqr \mid (pq)^r + (qr)^p + (rp)^q - 1,$$

then

$$(pqr)^3 \mid 3((pq)^r + (qr)^p + (rp)^q - 1).$$

Act of Problem Solving is an ACS WASC Accredited School.