AoPS Community

Mexico National Olympiad 2010

www.artofproblemsolving.com/community/c4178
by codyj

Day 1

1 Find all triplets of natural numbers (a, b, c) that satisfy the equation $a b c=a+b+c+1$.
2 In each cell of an $n \times n$ board is a lightbulb. Initially, all of the lights are off. Each move consists of changing the state of all of the lights in a row or of all of the lights in a column (off lights are turned on and on lights are turned off).

Show that if after a certain number of moves, at least one light is on, then at this moment at least n lights are on.
$3 \quad$ Let \mathcal{C}_{1} and \mathcal{C}_{2} be externally tangent at a point A. A line tangent to \mathcal{C}_{1} at B intersects \mathcal{C}_{2} at C and D; then the segment $A B$ is extended to intersect \mathcal{C}_{2} at a point E. Let F be the midpoint of CD that does not contain E, and let H be the intersection of $B F$ with \mathcal{C}_{2}. Show that $C D, A F$, and EH are concurrent.

Day 2

1 Let n be a positive integer. In an $n \times 4$ table, each row is equal to

A change is taking three consecutive boxes in the same row with different digits in them and changing the digits in these boxes as follows:

$$
0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0 .
$$

For example, a row \begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 2 \& 0 \& 1 \& 0

\hline

\hline 2 \& 1 \& 2 \& 1

because 0,1 , and 0 are not distinct.
\end{tabular}

Changes can be applied as often as wanted, even to items already changed. Show that for $n<12$, it is not possible to perform a finite number of changes so that the sum of the elements in each column is equal.

2 Let $A B C$ be an acute triangle with $A B \neq A C, M$ be the median of $B C$, and H be the orthocenter of $\triangle A B C$. The circumcircle of B, H, and C intersects the median $A M$ at N. Show that $\angle A N H=90^{\circ}$.

3 Let p, q, and r be distinct positive prime numbers. Show that if

$$
p q r \mid(p q)^{r}+(q r)^{p}+(r p)^{q}-1,
$$

then

$$
(p q r)^{3} \mid 3\left((p q)^{r}+(q r)^{p}+(r p)^{q}-1\right) .
$$

