Art of Problem Solving

AoPS Community

2012 Mexico National Olympiad

Mexico National Olympiad 2012

www.artofproblemsolving.com/community/c4180
by randomusername

Day 1

1 Let \mathcal{C}_{1} be a circumference with center O, P a point on it and ℓ the line tangent to \mathcal{C}_{1} at P. Consider a point Q on ℓ different from P, and let \mathcal{C}_{2} be the circumference passing through O, P and Q. Segment $O Q$ cuts \mathcal{C}_{1} at S and line $P S$ cuts \mathcal{C}_{2} at a point R diffferent from P. If r_{1} and r_{2} are the radii of \mathcal{C}_{1} and \mathcal{C}_{2} respectively, Prove

$$
\frac{P S}{S R}=\frac{r_{1}}{r_{2}} .
$$

2 Let $n \geq 4$ be an even integer. Consider an $n \times n$ grid. Two cells (1×1 squares) are neighbors if they share a side, are in opposite ends of a row, or are in opposite ends of a column. In this way, each cell in the grid has exactly four neighbors.
An integer from 1 to 4 is written inside each square according to the following rules:
-If a cell has a 2 written on it, then at least two of its neighbors contain a 1.
-If a cell has a 3 written on it, then at least three of its neighbors contain a 1.
-If a cell has a 4 written on it, then all of its neighbors contain a 1.
Among all arrangements satisfying these conditions, what is the maximum number that can be obtained by adding all of the numbers on the grid?

3 Prove among any 14 consecutive positive integers there exist 6 which are pairwise relatively prime.

Day 2

4 The following process is applied to each positive integer the sum of its digits is subtracted from the number, and the result is divided by 9 . For example, the result of the process applied to 938 is 102 , since $\frac{938-(9+3+8)}{9}=102$. Applying the process twice to 938 the result is 11 , applied three times the result is 1 , and applying it four times the result is 0 . When the process is applied one or more times to an integer n, the result is eventually 0 . The number obtained before obtaining 0 is called the house of n.
How many integers less than 26000 share the same house as 2012 ?
5 Some frogs, some red and some others green, are going to move in an 11×11 grid, according to the following rules. If a frog is located, say, on the square marked with\# in the following
diagram, then
-If it is red, it can jump to any square marked with an x .
-if it is green, it can jump to any square marked with an o.

We say 2 frogs (of any color) can meet at a square if both can get to the same square in one or more jumps, not neccesarily with the same amount of jumps.
-Prove if 6 frogs are placed, then there exist at least 2 that can meet at a square.
-For which values of k is it possible to place one green and one red frog such that they can meet at exactly k squares?

6 Consider an acute triangle $A B C$ with circumcircle \mathcal{C}. Let H be the orthocenter of $A B C$ and M the midpoint of $B C$. Lines $A H, B H$ and $C H$ cut \mathcal{C} again at points D, E, and F respectively; line $M H$ cuts \mathcal{C} at J such that H lies between J and M. Let K and L be the incenters of triangles $D E J$ and $D F J$ respectively. Prove $K L$ is parallel to $B C$.

