Art of Problem Solving

AoPS Community

Mexico National Olympiad 2014

www.artofproblemsolving.com/community/c4182
by juckter, ralk912

Day 1

1 Each of the integers from 1 to 4027 has been colored either green or red. Changing the color of a number is making it red if it was green and making it green if it was red. Two positive integers m and n are said to be cuates if either $\frac{m}{n}$ or $\frac{n}{m}$ is a prime number. A step consists in choosing two numbers that are cuates and changing the color of each of them. Show it is possible to apply a sequence of steps such that every integer from 1 to 2014 is green.

2 A positive integer a is said to reduce to a positive integer b if when dividing a by its units digits the result is b. For example, 2015 reduces to $\frac{2015}{5}=403$.
Find all the positive integers that become 1 after some amount of reductions. For example, 12 is one such number because 12 reduces to 6 and 6 reduces to 1 .
$3 \quad$ Let Γ_{1} be a circle and P a point outside of Γ_{1}. The tangents from P to Γ_{1} touch the circle at A and B. Let M be the midpoint of $P A$ and Γ_{2} the circle through P, A and B. Line $B M$ cuts Γ_{2} at C, line $C A$ cuts Γ_{1} at D, segment $D B$ cuts Γ_{2} at E and line $P E$ cuts Γ_{1} at F, with E in segment $P F$. Prove lines $A F, B P$, and $C E$ are concurrent.

Day 2

4 Problem 4
Let $A B C D$ be a rectangle with diagonals $A C$ and $B D$. Let E be the intersection of the bisector of $\angle C A D$ with segment $C D, F$ on $C D$ such that E is midpoint of $D F$, and G on $B C$ such that $B G=A C$ (with C between B and G). Prove that the circumference through D, F and G is tangent to $B G$.

5 Let a, b, c be positive reals such that $a+b+c=3$. Prove:

$$
\frac{a^{2}}{a+\sqrt[3]{b c}}+\frac{b^{2}}{b+\sqrt[3]{c a}}+\frac{c^{2}}{c+\sqrt[3]{a b}} \geq \frac{3}{2}
$$

And determine when equality holds.
$6 \quad$ Let $d(n)$ be the number of positive divisors of a positive integer n (including 1 and n). Find all values of n such that $n+d(n)=d(n)^{2}$.

