2012 USA TSTST



## **AoPS Community**

## USA TSTST 2012

www.artofproblemsolving.com/community/c4184 by v\_Enhance, rrusczyk

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Find all infinite sequences $a_1, a_2, \ldots$ of positive integers satisfying the following properties:<br>(a) $a_1 < a_2 < a_3 < \cdots$ ,<br>(b) there are no positive integers <i>i</i> , <i>j</i> , <i>k</i> , not necessarily distinct, such that $a_i + a_j = a_k$ ,<br>(c) there are infinitely many <i>k</i> such that $a_k = 2k - 1$ .                                                                                                                                                                                               |
| 2     | Let $ABCD$ be a quadrilateral with $AC = BD$ . Diagonals $AC$ and $BD$ meet at $P$ . Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$ . Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$ . Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$ ), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat{SP}$ (not including $B$ ) and $\widehat{TP}$ (not including $C$ ). Prove that $MN \parallel O_1O_2$ . |
| 3     | Let $\mathbb{N}$ be the set of positive integers. Let $f : \mathbb{N} \to \mathbb{N}$ be a function satisfying the following two conditions:<br>(a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime.<br>(b) $n \le f(n) \le n + 2012$ for all $n$ .<br>Prove that for any natural number $n$ and any prime $p$ , if $p$ divides $f(n)$ then $p$ divides $n$ .                                                                                                                                                 |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- 4 In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA, C to ABbe  $A_1, B_1, C_1$ , respectively. Denote by  $A_2$  the intersection of lines BC and  $B_1C_1$ . Define  $B_2$  and  $C_2$  analogously. Let D, E, F be the respective midpoints of sides BC, CA, AB. Show that the perpendiculars from D to  $AA_2$ , E to  $BB_2$  and F to  $CC_2$  are concurrent.
- 5 A rational number x is given. Prove that there exists a sequence x<sub>0</sub>, x<sub>1</sub>, x<sub>2</sub>,... of rational numbers with the following properties:
  (a) x<sub>0</sub> = x;
  (b) for every n ≥ 1, either x<sub>n</sub> = 2x<sub>n-1</sub> or x<sub>n</sub> = 2x<sub>n-1</sub> + <sup>1</sup>/<sub>n</sub>;
  (c) x<sub>n</sub> is an integer for some n.

**6** Positive real numbers x, y, z satisfy xyz + xy + yz + zx = x + y + z + 1. Prove that

$$\frac{1}{3}\left(\sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}}\right) \le \left(\frac{x+y+z}{3}\right)^{5/8}.$$

## Day 3

7 Triangle ABC is inscribed in circle  $\Omega$ . The interior angle bisector of angle A intersects side BC and  $\Omega$  at D and L (other than A), respectively. Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment PQ, and let H be the foot of the perpendicular from L to line ND. Prove that line ML is tangent to the circumcircle of triangle HMN.

8 Let *n* be a positive integer. Consider a triangular array of nonnegative integers as follows:

| <b>Row</b> 1 : | $a_{0,1}$ |             |           |             |           |           |     |               |             |
|----------------|-----------|-------------|-----------|-------------|-----------|-----------|-----|---------------|-------------|
| <b>Row</b> 2 : |           |             |           | $a_{0,2}$   |           | $a_{1,2}$ |     |               |             |
|                |           |             | ÷         |             | ÷         |           | ÷   |               |             |
| Row $n-1$ :    |           | $a_{0,n-1}$ |           | $a_{1,n-1}$ |           |           |     | $a_{n-2,n-1}$ |             |
| Row $n$ :      | $a_{0,n}$ |             | $a_{1,n}$ |             | $a_{2,n}$ |           | ••• |               | $a_{n-1,n}$ |

Call such a triangular array *stable* if for every  $0 \le i < j < k \le n$  we have

$$a_{i,j} + a_{j,k} \le a_{i,k} \le a_{i,j} + a_{j,k} + 1.$$

For  $s_1, \ldots s_n$  any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row k is equal to  $s_k$ .

- **9** Given a set *S* of *n* variables, a binary operation  $\times$  on *S* is called *simple* if it satisfies  $(x \times y) \times z = x \times (y \times z)$  for all  $x, y, z \in S$  and  $x \times y \in \{x, y\}$  for all  $x, y \in S$ . Given a simple operation  $\times$  on *S*, any string of elements in *S* can be reduced to a single element, such as  $xyz \to x \times (y \times z)$ . A string of variables in *S* is called *full* if it contains each variable in *S* at least once, and two strings are *equivalent* if they evaluate to the same variable regardless of which simple  $\times$  is chosen. For example xxx, xx, and x are equivalent, but these are only full if n = 1. Suppose *T* is a set of strings such that any full string is equivalent to exactly one element of *T*. Determine the number of elements of *T*.
- https://data.artofproblemsolving.com/images/maa\_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.