AoPS Community

USA TSTST 2012

www.artofproblemsolving.com/community/c4184
by v_Enhance, rrusczyk

Day 1

1 Find all infinite sequences a_{1}, a_{2}, \ldots of positive integers satisfying the following properties:
(a) $a_{1}<a_{2}<a_{3}<\cdots$,
(b) there are no positive integers i, j, k, not necessarily distinct, such that $a_{i}+a_{j}=a_{k}$,
(c) there are infinitely many k such that $a_{k}=2 k-1$.

2 Let $A B C D$ be a quadrilateral with $A C=B D$. Diagonals $A C$ and $B D$ meet at P. Let ω_{1} and O_{1} denote the circumcircle and the circumcenter of triangle $A B P$. Let ω_{2} and O_{2} denote the circumcircle and circumcenter of triangle $C D P$. Segment $B C$ meets ω_{1} and ω_{2} again at S and T (other than B and C), respectively. Let M and N be the midpoints of minor arcs $\widehat{S P}$ (not including B) and $\widehat{T P}$ (not including C). Prove that $M N \| O_{1} O_{2}$.
$3 \quad$ Let \mathbb{N} be the set of positive integers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying the following two conditions:
(a) $f(m)$ and $f(n)$ are relatively prime whenever m and n are relatively prime.
(b) $n \leq f(n) \leq n+2012$ for all n.

Prove that for any natural number n and any prime p, if p divides $f(n)$ then p divides n.

Day 2

4 In scalene triangle $A B C$, let the feet of the perpendiculars from A to $B C, B$ to $C A, C$ to $A B$ be A_{1}, B_{1}, C_{1}, respectively. Denote by A_{2} the intersection of lines $B C$ and $B_{1} C_{1}$. Define B_{2} and C_{2} analogously. Let D, E, F be the respective midpoints of sides $B C, C A, A B$. Show that the perpendiculars from D to $A A_{2}, E$ to $B B_{2}$ and F to $C C_{2}$ are concurrent.

5 A rational number x is given. Prove that there exists a sequence $x_{0}, x_{1}, x_{2}, \ldots$ of rational numbers with the following properties:
(a) $x_{0}=x$;
(b) for every $n \geq 1$, either $x_{n}=2 x_{n-1}$ or $x_{n}=2 x_{n-1}+\frac{1}{n}$;
(c) x_{n} is an integer for some n.

6 Positive real numbers x, y, z satisfy $x y z+x y+y z+z x=x+y+z+1$. Prove that

$$
\frac{1}{3}\left(\sqrt{\frac{1+x^{2}}{1+x}}+\sqrt{\frac{1+y^{2}}{1+y}}+\sqrt{\frac{1+z^{2}}{1+z}}\right) \leq\left(\frac{x+y+z}{3}\right)^{5 / 8}
$$

Day 3

$7 \quad$ Triangle $A B C$ is inscribed in circle Ω. The interior angle bisector of angle A intersects side $B C$ and Ω at D and L (other than A), respectively. Let M be the midpoint of side $B C$. The circumcircle of triangle $A D M$ intersects sides $A B$ and $A C$ again at Q and P (other than A), respectively. Let N be the midpoint of segment $P Q$, and let H be the foot of the perpendicular from L to line $N D$. Prove that line $M L$ is tangent to the circumcircle of triangle $H M N$.

8 Let n be a positive integer. Consider a triangular array of nonnegative integers as follows:

Call such a triangular array stable if for every $0 \leq i<j<k \leq n$ we have

$$
a_{i, j}+a_{j, k} \leq a_{i, k} \leq a_{i, j}+a_{j, k}+1
$$

For $s_{1}, \ldots s_{n}$ any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row k is equal to s_{k}.
$9 \quad$ Given a set S of n variables, a binary operation \times on S is called simple if it satisfies $(x \times y) \times z=$ $x \times(y \times z)$ for all $x, y, z \in S$ and $x \times y \in\{x, y\}$ for all $x, y \in S$. Given a simple operation \times on S, any string of elements in S can be reduced to a single element, such as $x y z \rightarrow x \times(y \times z)$. A string of variables in S is called full if it contains each variable in S at least once, and two strings are equivalent if they evaluate to the same variable regardless of which simple \times is chosen. For example $x x x, x x$, and x are equivalent, but these are only full if $n=1$. Suppose T is a set of strings such that any full string is equivalent to exactly one element of T. Determine the number of elements of T.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

