

AoPS Community

2002 Czech-Polish-Slovak Match

Czech-Polish-Slovak Match 2002

www.artofproblemsolving.com/community/c4188 by djb86

Day 1 June 17th

1	Let a, b be distinct real numbers and k, m be positive integers $k + m = n \ge 3, k \le 2m, m \le 2k$. Consider sequences x_1, \ldots, x_n with the following properties: (i) k terms x_i , including x_1 , are equal to a ; (ii) m terms x_i , including x_n , are equal to b ; (iii) no three consecutive terms are equal. Find all possible values of $x_n x_1 x_2 + x_1 x_2 x_3 + \cdots + x_{n-1} x_n x_1$.
2	A triangle <i>ABC</i> has sides $BC = a, CA = b, AB = c$ with $a < b < c$ and area <i>S</i> . Determine the largest number <i>u</i> and the least number <i>v</i> such that, for every point <i>P</i> inside $\triangle ABC$, the inequality $u \le PD + PE + PF \le v$ holds, where <i>D</i> , <i>E</i> , <i>F</i> are the intersection points of <i>AP</i> , <i>BP</i> , <i>CP</i> with the opposite sides.
3	Let $S = \{1, 2, \dots, n\}, n \in N$. Find the number of functions $f : S \to S$ with the property that $x + f(f(f(f(x)))) = n + 1$ for all $x \in S$?
Day 2	June 18th
4	An integer $n > 1$ and a prime p are such that n divides $p - 1$, and p divides $n^3 - 1$. Prove that $4p - 3$ is a perfect square.
5	In an acute-angled triangle ABC with circumcenter O , points P and Q are taken on sides AC and BC respectively such that $\frac{AP}{PQ} = \frac{BC}{AB}$ and $\frac{BQ}{PQ} = \frac{AC}{AB}$. Prove that the points O, P, Q, C lie on a circle.
6	Let $n \ge 2$ be a fixed even integer. We consider polynomials of the form
	$P(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + 1$
	with we have the interval of $2 + 2$

with real coefficients, having at least one real roots. Find the least possible value of $a_1^2 + a_2^2 + \cdots + a_{n-1}^2$.

Art of Problem Solving is an ACS WASC Accredited School.