AoPS Community

Czech-Polish-Slovak Match 2003

www.artofproblemsolving.com/community/c4189 by djb86, Megus, WakeUp

Day 1 June 16th

1 Given an integer $n \geq 2$, solve in real numbers the system of equations

$$
\begin{aligned}
\max \left\{1, x_{1}\right\} & =x_{2} \\
\max \left\{2, x_{2}\right\} & =2 x_{3} \\
& \cdots \\
\max \left\{n, x_{n}\right\} & =n x_{1} .
\end{aligned}
$$

2 In an acute-angled triangle $A B C$ the angle at B is greater than 45°. Points D, E, F are the feet of the altitudes from A, B, C respectively, and K is the point on segment $A F$ such that $\angle D K F=\angle K E F$.
(a) Show that such a point K always exists.
(b) Prove that $K D^{2}=F D^{2}+A F \cdot B F$.

3 Numbers p, q, r lies in the interval $\left(\frac{2}{5}, \frac{5}{2}\right)$ nad satisfy $p q r=1$. Prove that there exist two triangles of the same area, one with the sides a, b, c and the other with the sides $p a, q b, r c$.

Day 2 June 17th
4 Point P lies on the median from vertex C of a triangle $A B C$. Line $A P$ meets $B C$ at X, and line $B P$ meets $A C$ at Y. Prove that if quadrilateral $A B X Y$ is cyclic, then triangle $A B C$ is isosceles.

5 Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}(k=1,2, \ldots n-1)$. Determine all positive integers n for which $\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}$ are all even numbers.
$6 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the condition

$$
f(f(x)+y)=2 x+f(f(y)-x) \quad \text { for all } x, y \in \mathbb{R}
$$

