AoPS Community

Czech-Polish-Slovak Match 2004

www.artofproblemsolving.com/community/c4190
by gauss202, djb86, Beat

Day 1 June 21st
1 Show that real numbers, p, q, r satisfy the condition $p^{4}(q-r)^{2}+2 p^{2}(q+r)+1=p^{4}$ if and only if the quadratic equations $x^{2}+p x+q=0$ and $y^{2}-p y+r=0$ have real roots (not necessarily distinct) which can be labeled by x_{1}, x_{2} and y_{1}, y_{2}, respectively, in such a way that $x_{1} y_{1}-x_{2} y_{2}=1$.

2 Show that for each natural number k there exist only finitely many triples (p, q, r) of distinct primes for which p divides $q r-k, q$ divides $p r-k$, and r divides $p q-k$.

3 A point P in the interior of a cyclic quadrilateral $A B C D$ satisfies $\angle B P C=\angle B A P+\angle P D C$. Denote by E, F and G the feet of the perpendiculars from P to the lines $A B, A D$ and $D C$, respectively. Show that the triangles $F E G$ and $P B C$ are similar.

Day 2 June 22nd

4 Solve in real numbers the system of equations:

$$
\begin{aligned}
& \frac{1}{x y}=\frac{x}{z}+1 \\
& \frac{1}{y z}=\frac{y}{x}+1 \\
& \frac{1}{z x}=\frac{z}{y}+1
\end{aligned}
$$

5 Points K, L, M on the sides $A B, B C, C A$ respectively of a triangle $A B C$ satisfy $\frac{A K}{K B}=\frac{B L}{L C}=$ $\frac{C M}{M A}$. Show that the triangles $A B C$ and $K L M$ have a common orthocenter if and only if $\triangle A B C$ is equilateral.

6 On the table there are $k \geq 3$ heaps of $1,2, \ldots, k$ stones. In the first step, we choose any three of the heaps, merge them into a single new heap, and remove 1 stone from this new heap. Thereafter, in the i-th step ($i \geq 2$) we merge some three heaps containing more than i stones in total and remove i stones from the new heap. Assume that after a number of steps a single heap of p stones remains on the table. Show that the number p is a perfect square if and only if so are both $2 k+2$ and $3 k+1$. Find the least k with this property.

