AoPS Community

Czech-Polish-Slovak Match 2005

www.artofproblemsolving.com/community/c4191
by djb86

Day 1 June 21st
1 Let n be a given positive integer. Solve the system

$$
\begin{gathered}
x_{1}+x_{2}^{2}+x_{3}^{3}+\cdots+x_{n}^{n}=n, \\
x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=\frac{n(n+1)}{2}
\end{gathered}
$$

in the set of nonnegative real numbers.
2 A convex quadrilateral $A B C D$ is inscribed in a circle with center O and circumscribed to a circle with center I. Its diagonals meet at P. Prove that points O, I and P lie on a line.

3 Find all integers $n \geq 3$ for which the polynomial

$$
W(x)=x^{n}-3 x^{n-1}+2 x^{n-2}+6
$$

can be written as a product of two non-constant polynomials with integer coefficients.
Day 2 June 22nd
4 We distribute $n \geq 1$ labelled balls among nine persons A, B, C, \ldots, I. How many ways are there to do this so that A gets the same number of balls as B, C, D and E together?

5 Given a convex quadrilateral $A B C D$, find the locus of the points P inside the quadrilateral such that

$$
S_{P A B} \cdot S_{P C D}=S_{P B C} \cdot S_{P D A}
$$

(where S_{X} denotes the area of triangle X).
6 Determine all pairs of integers (x, y) satisfying the equation

$$
y(x+y)=x^{3}-7 x^{2}+11 x-3 .
$$

