AoPS Community

Czech-Polish-Slovak Match 2006

www.artofproblemsolving.com/community/c4192
by Rijul saini, djb86

Day 1 June 26th
1 Five distinct points A, B, C, D and E lie in this order on a circle of radius r and satisfy $A C=$ $B D=C E=r$. Prove that the orthocentres of the triangles $A C D, B C D$ and $B C E$ are the vertices of a right-angled triangle.

2 There are n children around a round table. Erika is the oldest among them and she has n candies, while no other child has any candy. Erika decided to distribute the candies according to the following rules. In every round, she chooses a child with at least two candies and the chosen child sends a candy to each of his/her two neighbors. (So in the first round Erika must choose herself). For which $n \geq 3$ is it possible to end the distribution after a finite number of rounds with every child having exactly one candy?

3 The sum of four real numbers is 9 and the sum of their squares is 21 . Prove that these numbers can be denoted by a, b, c, d so that $a b-c d \geq 2$ holds.

Day 2 June 27th
4 Show that for every integer $k \geq 1$ there is a positive integer n such that the decimal representation of 2^{n} contains a block of exactly k zeros, i.e. $2^{n}=\ldots a 00 \ldots 0 b \ldots$ with k zeros and $a, b \neq 0$.

5 Find the number of sequences $\left(a_{n}\right)_{n=1}^{\infty}$ of integers satisfying $a_{n} \neq-1$ and

$$
a_{n+2}=\frac{a_{n}+2006}{a_{n+1}+1}
$$

for each $n \in \mathbb{N}$.
6 Find out if there is a convex pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ such that, for each $i=1, \ldots, 5$, the lines $A_{i} A_{i+3}$ and $A_{i+1} A_{i+2}$ intersect at a point B_{i} and the points $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ are collinear. (Here $A_{i+5}=A_{i}$.)

