AoPS Community

Czech-Polish-Slovak Match 2007

www.artofproblemsolving.com/community/c4193
by Potla, parmenides51

1 Find all polynomials P with real coefficients satisfying $P\left(x^{2}\right)=P(x) \cdot P(x+2)$ for all real numbers x.

2 The Fibonacci sequence is defined by $a_{1}=a_{2}=1$ and $a_{k+2}=a_{k+1}+a_{k}$ for $k \in \mathbb{N}$. Prove that for any natural number m, there exists an index k such that $a_{k}^{4}-a_{k}-2$ is divisible by m.

3 A convex quadrilateral $A B C D$ inscribed in a circle k has the property that the rays $D A$ and $C B$ meet at a point E for which $C D^{2}=A D \cdot E D$. The perpendicular to $E D$ at A intersects k again at point F. Prove that the segments $A D$ and $C F$ are congruent if and only if the circumcenterof $\triangle A B E$ lies on $E D$.

4 For any real number $p \geq 1$ consider the set of all real numbers x with

$$
p<x<\left(2+\sqrt{p+\frac{1}{4}}\right)^{2} .
$$

Prove that from any such set one can select four mutually distinct natural numbers a, b, c, d with $a b=c d$.

5 For which $n \in\{3900,3901, \cdots, 3909\}$ can the set $\{1,2, \ldots, n\}$ be partitioned into (disjoint) triples in such a way that in each triple one of the numbers equals the sum of the other two?
$6 \quad$ Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that $\angle P A B+\angle P D C \leq 90^{\circ}$ and $\angle P B A+\angle P C D \leq 90^{\circ}$. Prove that $A B+C D \geq$ $B C+A D$.

