AoPS Community

Czech-Polish-Slovak Match 2008

www.artofproblemsolving.com/community/c4194
by Sayan

Day 1 June 22nd
1 Determine all triples (x, y, z) of positive real numbers which satisfies the following system of equations

$$
\begin{aligned}
2 x^{3} & =2 y\left(x^{2}+1\right)-\left(z^{2}+1\right), \\
2 y^{4} & =3 z\left(y^{2}+1\right)-2\left(x^{2}+1\right), \\
2 z^{5} & =4 x\left(z^{2}+1\right)-3\left(y^{2}+1\right) .
\end{aligned}
$$

$2 \quad A B C D E F$ is a convex hexagon, such that $|\angle F A B|=|\angle B C D|=|\angle D E F|$ and $|A B|=|B C|$, $|C D|=|D E|,|E F|=|F A|$. Prove that the lines $A D, B E$ and $C F$ are concurrent.

3 Find all primes p such that the expression

$$
\binom{p}{1}^{2}+\binom{p}{2}^{2}+\cdots+\binom{p}{p-1}^{2}
$$

is divisible by p^{3}.
Day 2 June 25th
1 Prove that there exists a positive integer n, such that the number $k^{2}+k+n$ does not have a prime divisor less than 2008 for any integer k.
$2 A B C D E$ is a regular pentagon. Determine the smallest value of the expression

$$
\frac{|P A|+|P B|}{|P C|+|P D|+|P E|},
$$

where P is an arbitrary point lying in the plane of the pentagon $A B C D E$.
3 Find all triplets (k, m, n) of positive integers having the following property: Square with side length m can be divided into several rectangles of size $1 \times k$ and a square with side length n.

