

AoPS Community

Czech-Polish-Slovak Match 2009

www.artofproblemsolving.com/community/c4195 by Shu

Day 1

1 Let \mathbb{R}^+ denote the set of positive real numbers. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy

$$\Bigl(1+yf(x)\Bigr)\Bigl(1-yf(x+y)\Bigr)=1$$

for all $x, y \in \mathbb{R}^+$.

2 For positive integers a and k, define the sequence a_1, a_2, \ldots by

 $a_1 = a$, and $a_{n+1} = a_n + k \cdot \varrho(a_n)$ for n = 1, 2, ...

where $\rho(m)$ denotes the product of the decimal digits of m (for example, $\rho(413) = 12$ and $\rho(308) = 0$). Prove that there are positive integers a and k for which the sequence a_1, a_2, \ldots contains exactly 2009 different numbers.

3 Let ω denote the excircle tangent to side BC of triangle ABC. A line ℓ parallel to BC meets sides AB and AC at points D and E, respectively. Let ω' denote the incircle of triangle ADE. The tangent from D to ω (different from line AB) and the tangent from E to ω (different from line AC) meet at point P. The tangent from B to ω' (different from line AB) and the tangent from L to ω (different from line AC) meet at point Q. Prove that, independent of the choice of ℓ , there is a fixed point that line PQ always passes through.

Day 2

4 Given a circle, let *AB* be a chord that is not a diameter, and let *C* be a point on the longer arc *AB*. Let *K* and *L* denote the reflections of *A* and *B*, respectively, about lines *BC* and *AC*, respectively. Prove that the distance between the midpoint of *AB* and the midpoint of *KL* is independent of the choice of *C*.

5 The *n*-tuple (a_1, a_2, \ldots, a_n) of integers satisfies the following: (i) $1 \le a_1 < a_2 < \cdots < a_n \le 50$ (ii) for each *n*-tuple (b_1, b_2, \ldots, b_n) of positive integers, there exist a positive integer *m* and an *n*-tuple (c_1, c_2, \ldots, c_n) of positive integers such that $mb_i = c_i^{a_i}$ for $i = 1, 2, \ldots, n$.

Prove that $n \leq 16$ and determine the number of *n*-tuples (a_1, a_2, \ldots, a_n) satisfying these conditions for n = 16.

AoPS Community

2009 Czech-Polish-Slovak Match

6 Let $n \ge 16$ be an integer, and consider the set of n^2 points in the plane:

$$G = \{(x, y) \mid x, y \in \{1, 2, \dots, n\}\}.$$

Let A be a subset of G with at least $4n\sqrt{n}$ elements. Prove that there are at least n^2 convex quadrilaterals whose vertices are in A and all of whose diagonals pass through a fixed point.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.