Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Match 2009

www.artofproblemsolving.com/community/c4195
by Shu

Day 1

$1 \quad$ Let \mathbb{R}^{+}denote the set of positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$that satisfy

$$
(1+y f(x))(1-y f(x+y))=1
$$

for all $x, y \in \mathbb{R}^{+}$.
2 For positive integers a and k, define the sequence a_{1}, a_{2}, \ldots by

$$
a_{1}=a, \quad \text { and } \quad a_{n+1}=a_{n}+k \cdot \varrho\left(a_{n}\right) \quad \text { for } n=1,2, \ldots
$$

where $\varrho(m)$ denotes the product of the decimal digits of m (for example, $\varrho(413)=12$ and $\varrho(308)=0)$. Prove that there are positive integers a and k for which the sequence a_{1}, a_{2}, \ldots contains exactly 2009 different numbers.

3 Let ω denote the excircle tangent to side $B C$ of triangle $A B C$. A line ℓ parallel to $B C$ meets sides $A B$ and $A C$ at points D and E, respectively. Let ω^{\prime} denote the incircle of triangle $A D E$. The tangent from D to ω (different from line $A B$) and the tangent from E to ω (different from line $A C$) meet at point P. The tangent from B to ω^{\prime} (different from line $A B$) and the tangent from C to ω^{\prime} (different from line $A C$) meet at point Q. Prove that, independent of the choice of ℓ, there is a fixed point that line $P Q$ always passes through.

Day 2

4 Given a circle, let $A B$ be a chord that is not a diameter, and let C be a point on the longer arc $A B$. Let K and L denote the reflections of A and B, respectively, about lines $B C$ and $A C$, respectively. Prove that the distance between the midpoint of $A B$ and the midpoint of $K L$ is independent of the choice of C.

5 The n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers satisfies the following:
(i) $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 50$
(ii) for each n-tuple $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of positive integers, there exist a positive integer m and an n-tuple ($c_{1}, c_{2}, \ldots, c_{n}$) of positive integers such that

$$
m b_{i}=c_{i}^{a_{i}} \quad \text { for } i=1,2, \ldots, n .
$$

Prove that $n \leq 16$ and determine the number of n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$) satisfying these conditions for $n=16$.

6 Let $n \geq 16$ be an integer, and consider the set of n^{2} points in the plane:

$$
G=\{(x, y) \mid x, y \in\{1,2, \ldots, n\}\} .
$$

Let A be a subset of G with at least $4 n \sqrt{n}$ elements. Prove that there are at least n^{2} convex quadrilaterals whose vertices are in A and all of whose diagonals pass through a fixed point.

