

## **AoPS Community**

# 2011 Czech-Polish-Slovak Match

### Czech-Polish-Slovak Match 2011

www.artofproblemsolving.com/community/c4197 by Shu

### Day 1 June 19th

| 1 | Let <i>a</i> , <i>b</i> , <i>c</i> be positive real numbers satisfying $a^2 < bc$ . Prove that $b^3 + ac^2 > ab(a + c)$ .                                                                                                                                                                                                                                                                                                                                        |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Written on a blackboard are $n$ nonnegative integers whose greatest common divisor is 1. A <i>move</i> consists of erasing two numbers $x$ and $y$ , where $x \ge y$ , on the blackboard and replacing them with the numbers $x - y$ and $2y$ . Determine for which original $n$ -tuples of numbers on the blackboard is it possible to reach a point, after some number of moves, where $n - 1$ of the numbers of the blackboard are zeroes.                    |
| 3 | Points A, B, C, D lie on a circle (in that order) where AB and CD are not parallel. The length of arc AB (which contains the points D and C) is twice the length of arc CD (which does not contain the points A and B). Let E be a point where $AC = AE$ and $BD = BE$ . Prove that if the perpendicular line from point E to the line AB passes through the center of the arc CD (which does not contain the points A and B), then $\angle ACB = 108^{\circ}$ . |

### Day 2 June 22nd

- 1 A polynomial P(x) with integer coefficients satisfies the following: if F(x), G(x), and Q(x) are polynomials with integer coefficients satisfying  $P(Q(x)) = F(x) \cdot G(x)$ , then F(x) or G(x) is a constant polynomial. Prove that P(x) is a constant polynomial.
- 2 In convex quadrilateral ABCD, let M and N denote the midpoints of sides AD and BC, respectively. On sides AB and CD are points K and L, respectively, such that  $\angle MKA = \angle NLC$ . Prove that if lines BD, KM, and LN are concurrent, then

 $\angle KMN = \angle BDC$  and  $\angle LNM = \angle ABD$ .

**3** Let *a* be any integer. Prove that there are infinitely many primes *p* such that

 $p \mid n^2 + 3$  and  $p \mid m^3 - a$ 

for some integers n and m.

Art of Problem Solving is an ACS WASC Accredited School.