

AoPS Community

2012 Czech-Polish-Slovak Match

Czech-Polish-Slovak Match 2012

www.artofproblemsolving.com/community/c4198 by Sayan

Day 1 June 24th

1	Given a positive integer n , let $\tau(n)$ denote the number of positive divisors of n and $\varphi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n . Find all n for which one of the three numbers $n, \tau(n), \varphi(n)$ is the arithmetic mean of the other two.
2	Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying
	$f(x + f(y)) - f(x) = (x + f(y))^4 - x^4$
	for all $x, y \in \mathbb{R}$.
3	Let $ABCD$ be a cyclic quadrilateral with circumcircle ω . Let I, J and K be the incentres of the triangles ABC, ACD and ABD respectively. Let E be the midpoint of the arc DB of circle ω containing the point A . The line EK intersects again the circle ω at point F ($F \neq E$). Prove that the points C, F, I, J lie on a circle.
Day 2	June 27th
1	Let ABC be a right angled triangle with hypotenuse AB and P be a point on the shorter arc AC of the circumcircle of triangle ABC . The line, perpendicuar to CP and passing through C , intersects AP , BP at points K and L respectively. Prove that the ratio of area of triangles BKL and ACP is independent of the position of point P .
2	City of Mar del Plata is a square shaped $WSEN$ land with $2(n + 1)$ streets that divides it into $n \times n$ blocks, where n is an even number (the leading streets form the perimeter of the square). Each block has a dimension of 100×100 meters. All streets in Mar del Plata are one-way. The streets which are parallel and adjacent to each other are directed in opposite direction. Street WS is driven in the direction from W to S and the street WN travels from W to N . A street cleaning car starts from point W . The driver wants to go to the point E and in doing so, he must cross as much as possible roads. What is the length of the longest route he can go, if any 100-meter stretch cannot be crossed more than once? (The figure shows a plan of the city for $n = 6$ and one of the possible - but not the longest - routes of the street cleaning car. See http://goo.gl/maps/JAzD too.)

3 Let a, b, c, d be positive real numbers such that abcd = 4 and

$$a^2 + b^2 + c^2 + d^2 = 10.$$

Find the maximum possible value of ab + bc + cd + da.

Act of Problem Solving is an ACS WASC Accredited School.