AoPS Community

Junior Balkan MO 1997

www.artofproblemsolving.com/community/c4199
by Iris Aliaj, MindFlyer, Valentin Vornicu, minsoens, scorpius119, zscool

1 Show that given any 9 points inside a square of side 1 we can always find 3 which form a triangle with area less than $\frac{1}{8}$.

Bulgaria

2 Let $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=k$. Compute the following expression in terms of k :

$$
E(x, y)=\frac{x^{8}+y^{8}}{x^{8}-y^{8}}-\frac{x^{8}-y^{8}}{x^{8}+y^{8}} .
$$

Ciprus
3 Let $A B C$ be a triangle and let I be the incenter. Let N, M be the midpoints of the sides $A B$ and $C A$ respectively. The lines $B I$ and $C I$ meet $M N$ at K and L respectively. Prove that $A I+B I+C I>B C+K L$.

Greece
4 Determine the triangle with sides a, b, c and circumradius R for which $R(b+c)=a \sqrt{b c}$.
Romania
5 Let $n_{1}, n_{2}, \ldots, n_{1998}$ be positive integers such that

$$
n_{1}^{2}+n_{2}^{2}+\cdots+n_{1997}^{2}=n_{1998}^{2}
$$

Show that at least two of the numbers are even.

