

AoPS Community

Junior Balkan MO 1998

www.artofproblemsolving.com/community/c4200

by Valentin Vornicu, shyong, pilot, RaMlaF, Iris Aliaj

-	June 18th
1	Prove that the number $\underbrace{111\ldots 11}_{1997}\underbrace{22\ldots 22}_{1998}5$ (which has 1997 of 1-s and 1998 of 2-s) is a perfect square.
2	Let $ABCDE$ be a convex pentagon such that $AB = AE = CD = 1$, $\angle ABC = \angle DEA = 90^{\circ}$ and $BC + DE = 1$. Compute the area of the pentagon.
	Greece
3	Find all pairs of positive integers (x, y) such that
	$x^y = y^{x-y}.$
	Albania
4	Do there exist 16 three digit numbers, using only three different digits in all, so that the all numbers give different residues when divided by 16?
	Bulgaria

