

AoPS Community

Junior Balkan MO 1999

www.artofproblemsolving.com/community/c4201

by Valentin Vornicu, leepakhin, Peter, Iris Aliaj, darij grinberg

-	June 25th
1	Let a, b, c, x, y be five real numbers such that $a^3 + ax + y = 0$, $b^3 + bx + y = 0$ and $c^3 + cx + y = 0$. If a, b, c are all distinct numbers prove that their sum is zero.
	Ciprus
2	For each nonnegative integer n we define $A_n = 2^{3n} + 3^{6n+2} + 5^{6n+2}$. Find the greatest common divisor of the numbers $A_0, A_1, \ldots, A_{1999}$.
	Romania
3	Let <i>S</i> be a square with the side length 20 and let <i>M</i> be the set of points formed with the vertices of <i>S</i> and another 1999 points lying inside <i>S</i> . Prove that there exists a triangle with vertices in <i>M</i> and with area at most equal with $\frac{1}{10}$.
	Yugoslavia
4	Let ABC be a triangle with $AB = AC$. Also, let $D \in [BC]$ be a point such that $BC > BD > DC > 0$, and let C_1, C_2 be the circumcircles of the triangles ABD and ADC respectively. Let BB' and CC' be diameters in the two circles, and let M be the midpoint of $B'C'$. Prove that the area of the triangle MBC is constant (i.e. it does not depend on the choice of the point D).
	Greece

Art of Problem Solving is an ACS WASC Accredited School.