AoPS Community

Junior Balkan MO 1999

www.artofproblemsolving.com/community/c4201
by Valentin Vornicu, leepakhin, Peter, Iris Aliaj, darij grinberg

- June 25th

1 Let a, b, c, x, y be five real numbers such that $a^{3}+a x+y=0, b^{3}+b x+y=0$ and $c^{3}+c x+y=0$. If a, b, c are all distinct numbers prove that their sum is zero.

Ciprus

2 For each nonnegative integer n we define $A_{n}=2^{3 n}+3^{6 n+2}+5^{6 n+2}$. Find the greatest common divisor of the numbers $A_{0}, A_{1}, \ldots, A_{1999}$.

Romania

$3 \quad$ Let S be a square with the side length 20 and let M be the set of points formed with the vertices of S and another 1999 points lying inside S. Prove that there exists a triangle with vertices in M and with area at most equal with $\frac{1}{10}$.

Yugoslavia

4 Let $A B C$ be a triangle with $A B=A C$. Also, let $D \in[B C]$ be a point such that $B C>B D>$ $D C>0$, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the circumcircles of the triangles $A B D$ and $A D C$ respectively. Let $B B^{\prime}$ and $C C^{\prime}$ be diameters in the two circles, and let M be the midpoint of $B^{\prime} C^{\prime}$. Prove that the area of the triangle $M B C$ is constant (i.e. it does not depend on the choice of the point D).

Greece

