AoPS Community

Junior Balkan MO 2000

www.artofproblemsolving.com/community/c4202
by riddler, Valentin Vornicu, shyong, Iris Aliaj, Omid Hatami

- June 23rd
$1 \quad$ Let x and y be positive reals such that

$$
x^{3}+y^{3}+(x+y)^{3}+30 x y=2000 .
$$

Show that $x+y=10$.
2 Find all positive integers $n \geq 1$ such that $n^{2}+3^{n}$ is the square of an integer.
Bulgaria
3 A half-circle of diameter $E F$ is placed on the side $B C$ of a triangle $A B C$ and it is tangent to the sides $A B$ and $A C$ in the points Q and P respectively. Prove that the intersection point K between the lines $E P$ and $F Q$ lies on the altitude from A of the triangle $A B C$.

Albania
4 At a tennis tournament there were $2 n$ boys and n girls participating. Every player played every other player. The boys won $\frac{7}{5}$ times as many matches as the girls. It is knowns that there were no draws. Find n.

Serbia

