

AoPS Community

Junior Balkan MO 2000

www.artofproblemsolving.com/community/c4202

by riddler, Valentin Vornicu, shyong, Iris Aliaj, Omid Hatami

-	June 23rd
1	Let x and y be positive reals such that
	$x^3 + y^3 + (x + y)^3 + 30xy = 2000.$
	Show that $x + y = 10$.
2	Find all positive integers $n \ge 1$ such that $n^2 + 3^n$ is the square of an integer.
	Bulgaria
3	A half-circle of diameter EF is placed on the side BC of a triangle ABC and it is tangent to the sides AB and AC in the points Q and P respectively. Prove that the intersection point K between the lines EP and FQ lies on the altitude from A of the triangle ABC .
	Albania
4	At a tennis tournament there were $2n$ boys and n girls participating. Every player played every other player. The boys won $\frac{7}{5}$ times as many matches as the girls. It is knowns that there were no draws. Find n .
	Serbia

