AoPS Community

Junior Balkan MO 2001

www.artofproblemsolving.com/community/c4203
by Valentin Vornicu, arqady, yetti, Iris Aliaj

- June 19th

1 Solve the equation $a^{3}+b^{3}+c^{3}=2001$ in positive integers.
Mircea Becheanu, Romania
2 Let $A B C$ be a triangle with $\angle C=90^{\circ}$ and $C A \neq C B$. Let $C H$ be an altitude and $C L$ be an interior angle bisector. Show that for $X \neq C$ on the line $C L$, we have $\angle X A C \neq \angle X B C$. Also show that for $Y \neq C$ on the line $C H$ we have $\angle Y A C \neq \angle Y B C$.

Bulgaria

$3 \quad$ Let $A B C$ be an equilateral triangle and D, E points on the sides $[A B]$ and $[A C]$ respectively. If $D F, E F$ (with $F \in A E, G \in A D$) are the interior angle bisectors of the angles of the triangle $A D E$, prove that the sum of the areas of the triangles $D E F$ and $D E G$ is at most equal with the area of the triangle $A B C$. When does the equality hold?

Greece

4 Let N be a convex polygon with 1415 vertices and perimeter 2001. Prove that we can find 3 vertices of N which form a triangle of area smaller than 1 .

