

AoPS Community

Junior Balkan MO 2001

www.artofproblemsolving.com/community/c4203 by Valentin Vornicu, arqady, yetti, Iris Aliaj

-	June 19th
1	Solve the equation $a^3 + b^3 + c^3 = 2001$ in positive integers.
	Mircea Becheanu, Romania
2	Let <i>ABC</i> be a triangle with $\angle C = 90^{\circ}$ and $CA \neq CB$. Let <i>CH</i> be an altitude and <i>CL</i> be an interior angle bisector. Show that for $X \neq C$ on the line <i>CL</i> , we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line <i>CH</i> we have $\angle YAC \neq \angle YBC$.
	Bulgaria
3	Let ABC be an equilateral triangle and D , E points on the sides $[AB]$ and $[AC]$ respectively. If DF , EF (with $F \in AE$, $G \in AD$) are the interior angle bisectors of the angles of the triangle ADE , prove that the sum of the areas of the triangles DEF and DEG is at most equal with the area of the triangle ABC . When does the equality hold?
	Greece
4	Let N be a convex polygon with 1415 vertices and perimeter 2001. Prove that we can find 3 vertices of N which form a triangle of area smaller than 1.

AoPS Online AoPS Academy AoPS & AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.