AoPS Community

Junior Balkan MO 2002

www.artofproblemsolving.com/community/c4204
by Valentin Vornicu, Virgil Nicula, Iris Aliaj, manlio, silouan

1 The triangle $A B C$ has $C A=C B . P$ is a point on the circumcircle between A and B (and on the opposite side of the line $A B$ to C). D is the foot of the perpendicular from C to $P B$. Show that $P A+P B=2 \cdot P D$.

2 Two circles with centers O_{1} and O_{2} meet at two points A and B such that the centers of the circles are on opposite sides of the line $A B$. The lines $B O_{1}$ and $B O_{2}$ meet their respective circles again at B_{1} and B_{2}. Let M be the midpoint of $B_{1} B_{2}$. Let M_{1}, M_{2} be points on the circles of centers O_{1} and O_{2} respectively, such that $\angle A O_{1} M_{1}=\angle A O_{2} M_{2}$, and B_{1} lies on the minor arc $A M_{1}$ while B lies on the minor arc $A M_{2}$. Show that $\angle M M_{1} B=\angle M M_{2} B$.

Ciprus
3 Find all positive integers which have exactly 16 positive divisors $1=d_{1}<d_{2}<\ldots<d_{16}=n$ such that the divisor d_{k}, where $k=d_{5}$, equals $\left(d_{2}+d_{4}\right) d_{6}$.

4 Prove that for all positive real numbers a, b, c the following inequality takes place

$$
\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^{2}} .
$$

Laurentiu Panaitopol, Romania

