

AoPS Community

Junior Balkan MO 2006

www.artofproblemsolving.com/community/c4208 by shobber

1	If $n > 4$ is a composite number, then $2n$ divides $(n - 1)!$.	
---	--	--

- **2** The triangle *ABC* is isosceles with AB = AC, and $\angle BAC < 60^{\circ}$. The points *D* and *E* are chosen on the side *AC* such that, EB = ED, and $\angle ABD \equiv \angle CBE$. Denote by *O* the intersection point between the internal bisectors of the angles $\angle BDC$ and $\angle ACB$. Compute $\angle COD$.
- **3** We call a number *perfect* if the sum of its positive integer divisors(including 1 and n) equals 2n. Determine all *perfect* numbers n for which n 1 and n + 1 are prime numbers.
- **4** Consider a $2n \times 2n$ board. From the *i*th line we remove the central 2(i 1) unit squares. What is the maximal number of rectangles 2×1 and 1×2 that can be placed on the obtained figure without overlapping or getting outside the board?

