

AoPS Community

IMC 2008

www.artofproblemsolving.com/community/c420970

by j____d, joybangla, flamingspinach, Kurt Gdel

– Day 1

1 Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that

 $f(x) - f(y) \in \mathbb{Q}$ for all $x - y \in \mathbb{Q}$

2 Denote by \mathbb{V} the real vector space of all real polynomials in one variable, and let $\gamma : \mathbb{V} \to \mathbb{R}$ be a linear map. Suppose that for all $f, g \in \mathbb{V}$ with $\gamma(fg) = 0$ we have $\gamma(f) = 0$ or $\gamma(g) = 0$. Prove that there exist $c, x_0 \in \mathbb{R}$ such that

$$\gamma(f) = cf(x_0) \quad \forall f \in \mathbb{V}$$

3 Let *p* be a polynomial with integer coecients and let $a_1 < a_2 < \cdots < a_k$ be integers. Given that $p(a_i) \neq 0 \forall i = 1, 2, \cdots, k$.

(a) Prove $\exists a \in \mathbb{Z}$ such that

$$p(a_i) \mid p(a) \quad \forall i = 1, 2, \dots, k$$

(b) Does there exist $a \in \mathbb{Z}$ such that

$$\prod_{i=1}^{k} p(a_i) \mid p(a)$$

4 We say a triple of real numbers (a_1, a_2, a_3) is **better** than another triple (b_1, b_2, b_3) when exactly two out of the three following inequalities hold: $a_1 > b_1$, $a_2 > b_2$, $a_3 > b_3$. We call a triple of real numbers **special** when they are nonnegative and their sum is 1.

For which natural numbers n does there exist a collection S of special triples, with |S| = n, such that any special triple is bettered by at least one element of S?

5 Does there exist a finite group *G* with a normal subgroup *H* such that |Aut H| > |Aut G|? Disprove or provide an example. Here the notation |Aut X| for some group *X* denotes the number of isomorphisms from *X* to itself.

AoPS Community

6 For a permutation $\sigma \in S_n$ with $(1, 2, ..., n) \mapsto (i_1, i_2, ..., i_n)$, define

$$D(\sigma) = \sum_{k=1}^{n} |i_k - k|$$

Let

$$Q(n,d) = |\{\sigma \in S_n : D(\sigma) = d\}|$$

Show that when $d \ge 2n$, Q(n, d) is an even number.

– Day 2

- 1 Let n, k be positive integers and suppose that the polynomial $x^{2k} x^k + 1$ divides $x^{2n} + x^n + 1$. Prove that $x^{2k} + x^k + 1$ divides $x^{2n} + x^n + 1$.
- **2** Two different ellipses are given. One focus of the first ellipse coincides with one focus of the second ellipse. Prove that the ellipses have at most two points in common.
- **3** Let *n* be a positive integer. Prove that 2^{n-1} divides

$$\sum_{0 \le k < n/2} \binom{n}{2k+1} 5^k$$

- **4** Let $\mathbb{Z}[x]$ be the ring of polynomials with integer coefficients, and let $f(x), g(x) \in \mathbb{Z}[x]$ be nonconstant polynomials such that g(x) divides f(x) in $\mathbb{Z}[x]$. Prove that if the polynomial f(x) 2008 has at least 81 distinct integer roots, then the degree of g(x) is greater than 5.
- 5 Let *n* be a positive integer, and consider the matrix $A = (a_{ij})_{1 \le i,j \le n}$ where $a_{ij} = 1$ if i + j is prime and $a_{ij} = 0$ otherwise. Prove that $|\det A| = k^2$ for some integer *k*.
- **6** Let \mathcal{H} be an infinite-dimensional Hilbert space, let d > 0, and suppose that S is a set of points (not necessarily countable) in \mathcal{H} such that the distance between any two distinct points in S is equal to d. Show that there is a point $y \in \mathcal{H}$ such that

$$\left\{\frac{\sqrt{2}}{d}(x-y): \ x \in S\right\}$$

is an orthonormal system of vectors in \mathcal{H} .

Art of Problem Solving is an ACS WASC Accredited School.