AoPS Community

IMC 2008

www.artofproblemsolving.com/community/c420970
by j_-_d, joybangla, flamingspinach, Kurt Gdel

- Day 1

1 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)-f(y) \in \mathbb{Q} \quad \text { for all } \quad x-y \in \mathbb{Q}
$$

2 Denote by \mathbb{V} the real vector space of all real polynomials in one variable, and let $\gamma: \mathbb{V} \rightarrow \mathbb{R}$ be a linear map. Suppose that for all $f, g \in \mathbb{V}$ with $\gamma(f g)=0$ we have $\gamma(f)=0$ or $\gamma(g)=0$. Prove that there exist $c, x_{0} \in \mathbb{R}$ such that

$$
\gamma(f)=c f\left(x_{0}\right) \quad \forall f \in \mathbb{V}
$$

3 Let p be a polynomial with integer coecients and let $a_{1}<a_{2}<\cdots<a_{k}$ be integers. Given that $p\left(a_{i}\right) \neq 0 \forall i=1,2, \cdots, k$.
(a) Prove $\exists a \in \mathbb{Z}$ such that

$$
p\left(a_{i}\right) \mid p(a) \forall i=1,2, \ldots, k
$$

(b) Does there exist $a \in \mathbb{Z}$ such that

$$
\prod_{i=1}^{k} p\left(a_{i}\right) \mid p(a)
$$

4 We say a triple of real numbers $\left(a_{1}, a_{2}, a_{3}\right)$ is better than another triple $\left(b_{1}, b_{2}, b_{3}\right)$ when exactly two out of the three following inequalities hold: $a_{1}>b_{1}, a_{2}>b_{2}, a_{3}>b_{3}$. We call a triple of real numbers special when they are nonnegative and their sum is 1 .

For which natural numbers n does there exist a collection S of special triples, with $|S|=n$, such that any special triple is bettered by at least one element of S ?

5 Does there exist a finite group G with a normal subgroup H such that \mid Aut $H|>|$ Aut $G \mid$? Disprove or provide an example. Here the notation \mid Aut $X \mid$ for some group X denotes the number of isomorphisms from X to itself.

6 For a permutation $\sigma \in S_{n}$ with $(1,2, \ldots, n) \mapsto\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, define

$$
D(\sigma)=\sum_{k=1}^{n}\left|i_{k}-k\right|
$$

Let

$$
Q(n, d)=\left|\left\{\sigma \in S_{n}: D(\sigma)=d\right\}\right|
$$

Show that when $d \geq 2 n, Q(n, d)$ is an even number.

- Day 2

1 Let n, k be positive integers and suppose that the polynomial $x^{2 k}-x^{k}+1$ divides $x^{2 n}+x^{n}+1$. Prove that $x^{2 k}+x^{k}+1$ divides $x^{2 n}+x^{n}+1$.

2 Two different ellipses are given. One focus of the first ellipse coincides with one focus of the second ellipse. Prove that the ellipses have at most two points in common.

3 Let n be a positive integer. Prove that 2^{n-1} divides

$$
\sum_{0 \leq k<n / 2}\binom{n}{2 k+1} 5^{k}
$$

$4 \quad$ Let $\mathbb{Z}[x]$ be the ring of polynomials with integer coefficients, and let $f(x), g(x) \in \mathbb{Z}[x]$ be nonconstant polynomials such that $g(x)$ divides $f(x)$ in $\mathbb{Z}[x]$. Prove that if the polynomial $f(x)-2008$ has at least 81 distinct integer roots, then the degree of $g(x)$ is greater than 5 .
$5 \quad$ Let n be a positive integer, and consider the matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ where $a_{i j}=1$ if $i+j$ is prime and $a_{i j}=0$ otherwise.
Prove that $|\operatorname{det} A|=k^{2}$ for some integer k.
$6 \quad$ Let \mathcal{H} be an infinite-dimensional Hilbert space, let $d>0$, and suppose that S is a set of points (not necessarily countable) in \mathcal{H} such that the distance between any two distinct points in S is equal to d. Show that there is a point $y \in \mathcal{H}$ such that

$$
\left\{\frac{\sqrt{2}}{d}(x-y): x \in S\right\}
$$

is an orthonormal system of vectors in \mathcal{H}.

