

AoPS Community

1994 IMC

IMC 1994

www.artofproblemsolving.com/community/c420975 by j___d, BEHZOD_UZ

- Day 1
- 1 a) Let A be a $n \times n$, $n \ge 2$, symmetric, invertible matrix with real positive elements. Show that $z_n \le n^2 2n$, where z_n is the number of zero elements in A^{-1} .

b) How many zero elements are there in the inverse of the $n \times n$ matrix

	(1)	1	1	1		$\begin{array}{c}1\\2\\1\\2\end{array}$
	1	2	2	2		2
	1	2	1	1		1
A =	1	2	1	2		2
	÷	÷	÷	÷	·	÷
	$\setminus 1$	2	1	2		·)

- **2** Let $f \in C^1(a, b)$, $\lim_{x \to a^+} f(x) = \infty$, $\lim_{x \to b^-} f(x) = -\infty$ and $f'(x) + f^2(x) \ge -1$ for $x \in (a, b)$. Prove that $b - a \ge \pi$ and give an example where $b - a = \pi$.
- **3** Given a set *S* of 2n 1, $n \in \mathbb{N}$, different irrational numbers. Prove that there are *n* different elements $x_1, x_2, \ldots, x_n \in S$ such that for all non-negative rational numbers a_1, a_2, \ldots, a_n with $a_1 + a_2 + \ldots + a_n > 0$ we have that $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ is an irrational number.
- **4** Let $\alpha \in \mathbb{R} \setminus \{0\}$ and suppose that F and G are linear maps (operators) from \mathbb{R}^n into \mathbb{R}^n satisfying $F \circ G G \circ F = \alpha F$.

a) Show that for all $k \in \mathbb{N}$ one has $F^k \circ G - G \circ F^k = \alpha k F^k$.

b) Show that there exists $k \ge 1$ such that $F^k = 0$.

5 a) Let $f \in C[0, b]$, $g \in C(\mathbb{R})$ and let g be periodic with period b. Prove that $\int_0^b f(x)g(nx) dx$ has a limit as $n \to \infty$ and

$$\lim_{n \to \infty} \int_0^b f(x)g(nx) \, \mathrm{d}x = \frac{1}{b} \int_0^b f(x) \, \mathrm{d}x \cdot \int_0^b g(x) \, \mathrm{d}x$$

b) Find

$$\lim_{n \to \infty} \int_0^\pi \frac{\sin x}{1 + 3\cos^2 nx} \,\mathrm{d}x$$

AoPS Community

6 Let $f \in C^2[0, N]$ and |f'(x)| < 1, f''(x) > 0 for every $x \in [0, N]$. Let $0 \le m_0 < m_1 < \cdots < m_k \le N$ be integers such that $n_i = f(m_i)$ are also integers for $i = 0, 1, \dots, k$. Denote $b_i = n_i - n_{i-1}$ and $a_i = m_i - m_{i-1}$ for $i = 1, 2, \dots, k$.

a) Prove that

$$-1 < \frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_k}{a_k} < 1$$

b) Prove that for every choice of A > 1 there are no more than N/A indices j such that $a_j > A$. c) Prove that $k \le 3N^{2/3}$ (i.e. there are no more than $3N^{2/3}$ integer points on the curve y = f(x), $x \in [0, N]$).

- Day 2

1 Let $f \in C^1[a, b]$, f(a) = 0 and suppose that $\lambda \in \mathbb{R}$, $\lambda > 0$, is such that

$$|f'(x)| \le \lambda |f(x)|$$

for all $x \in [a, b]$. Is it true that f(x) = 0 for all $x \in [a, b]$?

2 Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be given by $f(x, y) = (x^2 - y^2)e^{-x^2 - y^2}$.

a) Prove that *f* attains its minimum and its maximum.

b) Determine all points (x, y) such that $\frac{\partial f}{\partial x}(x, y) = \frac{\partial f}{\partial y}(x, y) = 0$ and determine for which of them f has global or local minimum or maximum.

3 Let *f* be a real-valued function with n + 1 derivatives at each point of \mathbb{R} . Show that for each pair of real numbers *a*, *b*, *a* < *b*, such that

$$\ln\left(\frac{f(b) + f'(b) + \dots + f^{(n)}(b)}{f(a) + f'(a) + \dots + f^{(n)}(a)}\right) = b - a$$

there is a number c in the open interval (a, b) for which

$$f^{(n+1)}(c) = f(c)$$

4 Let A be a $n \times n$ diagonal matrix with characteristic polynomial

$$(x-c_1)^{d_1}(x-c_2)^{d_2}\dots(x-c_k)^{d_k}$$

where c_1, c_2, \ldots, c_k are distinct (which means that c_1 appears d_1 times on the diagonal, c_2 appears d_2 times on the diagonal, etc. and $d_1 + d_2 + \ldots + d_k = n$).

1994 IMC

AoPS Community

$$d_1^2 + d_2^2 + \dots + d_k^2$$

5 problem 5.

Let x_1, x_2, \ldots, x_k be vectors of *m*-dimensional Euclidean space, such that $x_1 + x_2 + \ldots + x_k = 0$. Show that there exists a permutation π of the integers $\{1, 2, \ldots, k\}$ such that:

$$\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\| \le \left(\sum_{i=1}^{k} \|x_i\|^2\right)^{1/2}$$

for each n = 1, 2, ..., k. Note that $\|\cdot\|$ denotes the Euclidean norm. (18 points).

6 Find

$$\lim_{N \to \infty} \frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln(N-k)}$$

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

3