Art of Problem Solving

AoPS Community

IMC 1994

www.artofproblemsolving.com/community/c420975
by j_-_d, BEHZOD_UZ

- Day 1

1 a) Let A be a $n \times n, n \geq 2$, symmetric, invertible matrix with real positive elements. Show that $z_{n} \leq n^{2}-2 n$, where z_{n} is the number of zero elements in A^{-1}.
b) How many zero elements are there in the inverse of the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & 2 & \ldots & 2 \\
1 & 2 & 1 & 1 & \ldots & 1 \\
1 & 2 & 1 & 2 & \ldots & 2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 1 & 2 & \ldots & \ddots
\end{array}\right)
$$

2 Let $f \in C^{1}(a, b), \lim _{x \rightarrow a^{+}} f(x)=\infty, \lim _{x \rightarrow b^{-}} f(x)=-\infty$ and $f^{\prime}(x)+f^{2}(x) \geq-1$ for $x \in(a, b)$. Prove that $b-a \geq \pi$ and give an example where $b-a=\pi$.
$3 \quad$ Given a set S of $2 n-1, n \in \mathbb{N}$, different irrational numbers. Prove that there are n different elements $x_{1}, x_{2}, \ldots, x_{n} \in S$ such that for all non-negative rational numbers $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}+a_{2}+\ldots+a_{n}>0$ we have that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$ is an irrational number.
$4 \quad$ Let $\alpha \in \mathbb{R} \backslash\{0\}$ and suppose that F and G are linear maps (operators) from \mathbb{R}^{n} into \mathbb{R}^{n} satisfying $F \circ G-G \circ F=\alpha F$.
a) Show that for all $k \in \mathbb{N}$ one has $F^{k} \circ G-G \circ F^{k}=\alpha k F^{k}$.
b) Show that there exists $k \geq 1$ such that $F^{k}=0$.

5 a) Let $f \in C[0, b], g \in C(\mathbb{R})$ and let g be periodic with period b. Prove that $\int_{0}^{b} f(x) g(n x) \mathrm{d} x$ has a limit as $n \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} \int_{0}^{b} f(x) g(n x) \mathrm{d} x=\frac{1}{b} \int_{0}^{b} f(x) \mathrm{d} x \cdot \int_{0}^{b} g(x) \mathrm{d} x
$$

b) Find

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin x}{1+3 \cos ^{2} n x} \mathrm{~d} x
$$

6 Let $f \in C^{2}[0, N]$ and $\left|f^{\prime}(x)\right|<1, f^{\prime \prime}(x)>0$ for every $x \in[0, N]$. Let $0 \leq m_{0}<m_{1}<\cdots<m_{k} \leq$ N be integers such that $n_{i}=f\left(m_{i}\right)$ are also integers for $i=0,1, \ldots, k$. Denote $b_{i}=n_{i}-n_{i-1}$ and $a_{i}=m_{i}-m_{i-1}$ for $i=1,2, \ldots, k$.
a) Prove that

$$
-1<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{k}}{a_{k}}<1
$$

b) Prove that for every choice of $A>1$ there are no more than N / A indices j such that $a_{j}>A$.
c) Prove that $k \leq 3 N^{2 / 3}$ (i.e. there are no more than $3 N^{2 / 3}$ integer points on the curve $y=f(x)$, $x \in[0, N])$.

- Day 2

1 Let $f \in C^{1}[a, b], f(a)=0$ and suppose that $\lambda \in \mathbb{R}, \lambda>0$, is such that

$$
\left|f^{\prime}(x)\right| \leq \lambda|f(x)|
$$

for all $x \in[a, b]$. Is it true that $f(x)=0$ for all $x \in[a, b]$?
$2 \quad$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left(x^{2}-y^{2}\right) e^{-x^{2}-y^{2}}$.
a) Prove that f attains its minimum and its maximum.
b) Determine all points (x, y) such that $\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0$ and determine for which of them f has global or local minimum or maximum.

3 Let f be a real-valued function with $n+1$ derivatives at each point of \mathbb{R}. Show that for each pair of real numbers $a, b, a<b$, such that

$$
\ln \left(\frac{f(b)+f^{\prime}(b)+\cdots+f^{(n)}(b)}{f(a)+f^{\prime}(a)+\cdots+f^{(n)}(a)}\right)=b-a
$$

there is a number c in the open interval (a, b) for which

$$
f^{(n+1)}(c)=f(c)
$$

$4 \quad$ Let A be a $n \times n$ diagonal matrix with characteristic polynomial

$$
\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \ldots\left(x-c_{k}\right)^{d_{k}}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are distinct (which means that c_{1} appears d_{1} times on the diagonal, c_{2} appears d_{2} times on the diagonal, etc. and $d_{1}+d_{2}+\ldots+d_{k}=n$).

Let V be the space of all $n \times n$ matrices B such that $A B=B A$. Prove that the dimension of V is

$$
d_{1}^{2}+d_{2}^{2}+\cdots+d_{k}^{2}
$$

5 problem 5.

Let $x_{1}, x_{2}, \ldots, x_{k}$ be vectors of m-dimensional Euclidean space, such that $x_{1}+x_{2}+\ldots+x_{k}=0$. Show that there exists a permutation π of the integers $\{1,2, \ldots, k\}$ such that:

$$
\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\| \leq\left(\sum_{i=1}^{k}\left\|x_{i}\right\|^{2}\right)^{1 / 2}
$$

for each $n=1,2, \ldots, k$. Note that $\|\cdot\|$ denotes the Euclidean norm. (18 points).

6 Find

$$
\lim _{N \rightarrow \infty} \frac{\ln ^{2} N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln (N-k)}
$$

