AoPS Community

Junior Balkan MO 2010

www.artofproblemsolving.com/community/c4212
by Ahiles

1 The real numbers a, b, c, d satisfy simultaneously the equations

$$
a b c-d=1, \quad b c d-a=2, \quad c d a-b=3, \quad d a b-c=-6 .
$$

Prove that $a+b+c+d \neq 0$.
2 Find all integers $n, n \geq 1$, such that $n \cdot 2^{n+1}+1$ is a perfect square.
3 Let $A L$ and $B K$ be angle bisectors in the non-isosceles triangle $A B C$ (L lies on the side $B C$, K lies on the side $A C$). The perpendicular bisector of $B K$ intersects the line $A L$ at point M. Point N lies on the line $B K$ such that $L N$ is parallel to $M K$. Prove that $L N=N A$.

4 A 9×7 rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with 90°) and square tiles composed by four unit squares. Let $n \geq 0$ be the number of the 2×2 tiles which can be used in such a tiling. Find all the values of n.

