

AoPS Community

Junior Balkan MO 2010

www.artofproblemsolving.com/community/c4212 by Ahiles

1 The real numbers *a*, *b*, *c*, *d* satisfy simultaneously the equations

abc - d = 1, bcd - a = 2, cda - b = 3, dab - c = -6.

Prove that $a + b + c + d \neq 0$.

2	Find all integers n , $n \ge 1$, such that $n \cdot 2^{n+1} + 1$ is a perfect square.
3	Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L lies on the side BC , K lies on the side AC). The perpendicular bisector of BK intersects the line AL at point M . Point N lies on the line BK such that LN is parallel to MK . Prove that $LN = NA$.
4	A 9×7 rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with 90°) and square tiles composed by four unit squares. Let $n \ge 0$ be the number of the 2×2 tiles which can be used in such a tiling. Find all the values of n .

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬