AoPS Community

Junior Balkan MO 2011

www.artofproblemsolving.com/community/c4213
by Eukleidis

1 Let a, b, c be positive real numbers such that $a b c=1$. Prove that:

$$
\prod\left(a^{5}+a^{4}+a^{3}+a^{2}+a+1\right) \geq 8\left(a^{2}+a+1\right)\left(b^{2}+b+1\right)\left(c^{2}+c+1\right)
$$

2 Find all primes p such that there exist positive integers x, y that satisfy $x\left(y^{2}-p\right)+y\left(x^{2}-p\right)=5 p$

3 Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into n^{2} smaller congruent equilateral triangles (with sides parallel to its sides). Let m be the number of rhombuses that contain two small equilateral triangles and d the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of n.
$4 \quad$ Let $A B C D$ be a convex quadrilateral and points E and F on sides $A B, C D$ such that

$$
\frac{A B}{A E}=\frac{C D}{D F}=n
$$

If S is the area of $A E F D$ show that $S \leq \frac{A B \cdot C D+n(n-1) A D^{2}+n^{2} D A \cdot B C}{2 n^{2}}$

