AoPS Community

Junior Balkan MO 2012

www.artofproblemsolving.com/community/c4214
by emregirgin35

- June 27th

1 Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}+6 \geq 2 \sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)
$$

When does equality hold?
2 Let the circles k_{1} and k_{2} intersect at two points A and B, and let t be a common tangent of k_{1} and k_{2} that touches k_{1} and k_{2} at M and N respectively. If $t \perp A M$ and $M N=2 A M$, evaluate the angle $N M B$.

3 On a board there are n nails, each two connected by a rope. Each rope is colored in one of n given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors.
a) Can n be 6 ?
b) Can n be 7 ?

4 Find all positive integers x, y, z and t such that $2^{x} 3^{y}+5^{z}=7^{t}$.

