

AoPS Community

Junior Balkan MO 2014

www.artofproblemsolving.com/community/c4216 by gavrilos, Itama

-	June 23rd
1	Find all triples of primes (p,q,r) satisfying $3p^4 - 5q^4 - 4r^2 = 26$.
2	Consider an acute triangle ABC of area S . Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by H_1 and H_2 the orthocentres of the triangles MNC , respectively MND . Find the area of the quadrilateral AH_1BH_2 in terms of S .
3	For positive real numbers a, b, c with $abc = 1$ prove that $\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \ge 3(a + b + c + 1)$
4	For a positive integer n , two payers A and B play the following game: Given a pile of s stones, the players take turn alternatively with A going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of n stones. The winner is the one who takes the last stone. Assuming both A and B play perfectly, for how many values of s the player A cannot win?

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.