AoPS Community

Junior Balkan MO 2014

www.artofproblemsolving.com/community/c4216
by gavrilos, Itama

- June 23rd

1 Find all triples of primes (p, q, r) satisfying $3 p^{4}-5 q^{4}-4 r^{2}=26$.
2 Consider an acute triangle $A B C$ of area S. Let $C D \perp A B(D \in A B), D M \perp A C(M \in A C)$ and $D N \perp B C(N \in B C)$. Denote by H_{1} and H_{2} the orthocentres of the triangles $M N C$, respectively $M N D$. Find the area of the quadrilateral $A H_{1} B H_{2}$ in terms of S.

3 For positive real numbers a, b, c with $a b c=1$ prove that $\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2} \geq 3(a+$ $b+c+1)$

4 For a positive integer n, two payers A and B play the following game: Given a pile of s stones, the players take turn alternatively with A going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of n stones. The winner is the one who takes the last stone. Assuming both A and B play perfectly, for how many values of s the player A cannot win?

