AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2002

www.artofproblemsolving.com/community/c4217
by Sayan

1 Solve the system

$$
(4 x)_{5}+7 y=14(2 y)_{5}-(3 x)_{7}=74
$$

in the domain of integers, where $(n)_{k}$ stands for the multiple of the number k closest to the number n.

2 Consider an arbitrary equilateral triangle $K L M$, whose vertices K, L and M lie on the sides $A B, B C$ and $C D$, respectively, of a given square $A B C D$. Find the locus of the midpoints of the sides $K L$ of all such triangles $K L M$.

3 Show that a given natural number A is the square of a natural number if and only if for any natural number n, at least one of the differences

$$
(A+1)^{2}-A,(A+2)^{2}-A,(A+3)^{2}-A, \cdots,(A+n)^{2}-A
$$

is divisible by n.
4 Find all pairs of real numbers a, b for which the equation in the domain of the real numbers

$$
\frac{a x^{2}-24 x+b}{x^{2}-1}=x
$$

has two solutions and the sum of them equals 12 .
$5 \quad$ A triangle $K L M$ is given in the plane together with a point A lying on the half-line opposite to $K L$. Construct a rectangle $A B C D$ whose vertices B, C and D lie on the lines $K M, K L$ and $L M$, respectively. (We allow the rectangle to be a square.)
$6 \quad$ Let \mathbb{R}^{+}denote the set of positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying for all $x, y \in \mathbb{R}^{+}$the equality

$$
f(x f(y))=f(x y)+x
$$

