Art of Problem Solving

AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2004

www.artofproblemsolving.com/community/c4218
by littletush

1 Find all triples (x, y, z) of real numbers such that

$$
x^{2}+y^{2}+z^{2} \leq 6+\min \left(x^{2}-\frac{8}{x^{4}}, y^{2}-\frac{8}{y^{4}}, z^{2}-\frac{8}{z^{4}}\right) .
$$

2 Consider all words containing only letters A and B. For any positive integer $n, p(n)$ denotes the number of all n-letter words without four consecutive A 's or three consecutive B 's. Find the value of the expression

$$
\frac{p(2004)-p(2002)-p(1999)}{p(2001)+p(2000)} .
$$

3 Given a circle S and its 121 chords $P_{i}(i=1,2, \ldots, 121)$, each with a point $A_{i}(i=1,2, \ldots, 121)$ on it. Prove that there exists a point X on the circumference of S such that: there exist 29 distinct indices $1 \leq k_{1} \leq k_{2} \leq \ldots \leq k_{29} \leq 121$, such that the angle formed by $A_{k_{j}} X$ and $P_{k_{j}}$ is smaller than 21 degrees for every $j=1,2, \ldots, 29$.
$4 \quad$ Find all positive integers n such that $\sum_{k=1}^{n} \frac{n}{k!}$ is an integer.
5 Let L be an arbitrary point on the minor arc $C D$ of the circumcircle of square $A B C D$. Let K, M, N be the intersection points of $A L, C D ; C L, A D$; and $M K, B C$ respectively. Prove that B, M, L, N are concyclic.

6 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for all positive real numbers x, y,

$$
x^{2}[f(x)+f(y)]=(x+y) f(y f(x)) .
$$

