AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2007

www.artofproblemsolving.com/community/c4219
by littletush

1 A stone is placed in a square of a chessboard with n rows and n columns. We can alternately undertake two operations:
(a) move the stone to a square that shares a common side with the square in which it stands;
(b) move it to a square sharing only one common vertex with the square in which it stands.

In addition, we are required that the first step must be (b). Find all integers n such that the stone can go through a certain path visiting every square exactly once.

2 In a cyclic quadrilateral $A B C D$, let L and M be the incenters of $A B C$ and $B C D$ respectively. Let R be a point on the plane such that $L R \perp A C$ and $M R \perp B D$.Prove that triangle $L M R$ is isosceles.

3 Consider a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any two positive integers x, y, the equation $f(x f(y))=y f(x)$ holds. Find the smallest possible value of $f(2007)$.

4 The set $M=\{1,2, \ldots, 2007\}$ has the following property: If n is an element of M, then all terms in the arithmetic progression with its first term n and common difference $n+1$, are in M. Does there exist an integer m such that all integers greater than m are elements of M ?
$5 \quad$ In an acute-angled triangle $A B C(A C \neq B C)$, let D and E be points on $B C$ and $A C$, respectively, such that the points A, B, D, E are concyclic and $A D$ intersects $B E$ at P. Knowing that $C P \perp A B$, prove that P is the orthocenter of triangle $A B C$.

6 Find all pariwise distinct real numbers x, y, z such that $\left\{\frac{x-y}{y-z}, \frac{y-z}{z-x}, \frac{z-x}{x-y}\right\}=\{x, y, z\}$. (It means, those three fractions make a permutation of x, y, and z.)

