AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2009

www.artofproblemsolving.com/community/c4221
by littletush

1 Knowing that the numbers $p, 3 p+2,5 p+4,7 p+6,9 p+8$, and $11 p+10$ are all primes, prove that $6 p+11$ is a composite number.

2 Rectangle $A B C D$ is inscribed in circle O. Let the projections of a point P on minor arc $C D$ onto $A B, A C, B D$ be K, L, M, respectively. Prove that $\angle L K M=45 i f$ and only if $A B C D$ is a square.

3 Find the least value of $x>0$ such that for all positive real numbers a, b, c, d satisfying $a b c d=1$, the inequality $a^{x}+b^{x}+c^{x}+d^{x} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$ is true.

4 A positive integer n is called good if and only if there exist exactly 4 positive integers $k_{1}, k_{2}, k_{3}, k_{4}$ such that $n+k_{i} \mid n+k_{i}^{2}(1 \leq k \leq 4)$. Prove that:
-58 is good;
$-2 p$ is good if and only if p and $2 p+1$ are both primes $(p>2)$.
$5 \quad$ At every vertex $A_{k}(1 \leq k \leq n)$ of a regular n-gon, k coins are placed. We can do the following operation: in each step, one can choose two arbitrarily coins and move them to their adjacent vertices respectively, one clockwise and one anticlockwise. Find all positive integers n such that after a finite number of operations, we can reach the following configuration: there are $n+1-k$ coins at vertex A_{k} for all $1 \leq k \leq n$.

6 Given two fixed points O and G in the plane. Find the locus of the vertices of triangles whose circumcenters and centroids are O and G respectively.

