Art of Problem Solving

AoPS Community

NIMO Summer Contest 2013

www.artofproblemsolving.com/community/c4229
by v_Enhance

- August 10th

1 What is the maximum possible score on this contest? Recall that on the NIMO 2013 Summer Contest, problems $1,2, \ldots, 15$ are worth $1,2, \ldots, 15$ points, respectively.
Proposed by Evan Chen
2 If $\frac{2+4+6}{1+3+5}-\frac{1+3+5}{2+4+6}=\frac{m}{n}$ for relatively prime integers m and n, compute $100 m+n$.
Proposed by Evan Chen
3 Jacob and Aaron are playing a game in which Aaron is trying to guess the outcome of an unfair coin which shows heads $\frac{2}{3}$ of the time. Aaron randomly guesses "heads" $\frac{2}{3}$ of the time, and guesses "tails" the other $\frac{1}{3}$ of the time. If the probability that Aaron guesses correctly is p, compute $9000 p$.

Proposed by Aaron Lin
4 Find the sum of the real roots of the polynomial

$$
\prod_{k=1}^{100}\left(x^{2}-11 x+k\right)=\left(x^{2}-11 x+1\right)\left(x^{2}-11 x+2\right) \ldots\left(x^{2}-11 x+100\right) .
$$

Proposed by Evan Chen
$5 \quad$ A point (a, b) in the plane is called sparkling if it also lies on the line $a x+b y=1$. Find the maximum possible distance between two sparkling points.
Proposed by Evan Chen
6 Let $A B C$ and $D E F$ be two triangles, such that $A B=D E=20, B C=E F=13$, and $\angle A=\angle D$. If $A C-D F=10$, determine the area of $\triangle A B C$.

Proposed by Lewis Chen
7 Circle ω_{1} and ω_{2} have centers $(0,6)$ and $(20,0)$, respectively. Both circles have radius 30 , and intersect at two points X and Y. The line through X and Y can be written in the form $y=m x+b$. Compute $100 m+b$.

Proposed by Evan Chen

8 A pair of positive integers (m, n) is called compatible if $m \geq \frac{1}{2} n+7$ and $n \geq \frac{1}{2} m+7$. A positive integer $k \geq 1$ is called lonely if (k, ℓ) is not compatible for any integer $\ell \geq 1$. Find the sum of all lonely integers.

Proposed by Evan Chen
9 Compute $99\left(99^{2}+3\right)+3 \cdot 99^{2}$.

Proposed by Evan Chen

10 Let $P(x)$ be the unique polynomial of degree four for which $P(165)=20$, and

$$
P(42)=P(69)=P(96)=P(123)=13 .
$$

Compute $P(1)-P(2)+P(3)-P(4)+\cdots+P(165)$.
Proposed by Evan Chen
11 Find $100 m+n$ if m and n are relatively prime positive integers such that

$$
\sum_{\substack{i, j \geq 0 \\ i+j \text { odd }}} \frac{1}{2^{i} 3^{j}}=\frac{m}{n}
$$

Proposed by Aaron Lin
12 In $\triangle A B C, A B=40, B C=60$, and $C A=50$. The angle bisector of $\angle A$ intersects the circumcircle of $\triangle A B C$ at A and P. Find $B P$.

Proposed by Eugene Chen

13 In trapezoid $A B C D, A D \| B C$ and $\angle A B C+\angle C D A=270^{\circ}$. Compute $A B^{2}$ given that $A B$. $\tan (\angle B C D)=20$ and $C D=13$.
Proposed by Lewis Chen
14 Let p, q, and r be primes satisfying

$$
p q r=1899962 .
$$

Compute $S(p)+S(q)+S(r)-S(p q r)$, where $S(n)$ denote the sum of the decimals digits of n. Proposed by Evan Chen

Ted quite likes haikus,
poems with five-seven-five,
but Ted knows few words.
He knows $2 n$ words
that contain n syllables
for every int n.
Ted can only write
N distinct haikus. Find N.
Take mod one hundred.

Ted loves creating haikus (Japanese three-line poems with $5,7,5$ syllables each), but his vocabulary is rather limited. In particular, for integers $1 \leq n \leq 7$, he knows $2 n$ words with n syllables. Furthermore, words cannot cross between lines, but may be repeated. If Ted can make N distinct haikus, compute the remainder when N is divided by 100 .
Proposed by Lewis Chen

