Art of Problem Solving

AoPS Community

2006 Princeton University Math Competition

Princeton University Math Competition 2006

www.artofproblemsolving.com/community/c4231
by hshiems

1 Given that $x^{2}+5 x+6=20$, find the value of $3 x^{2}+15 x+17$.
2 Express $\sqrt{7+4 \sqrt{3}}+\sqrt{7-4 \sqrt{3}}$ in the simplest possible form.
3 Let r_{1}, \ldots, r_{5} be the roots of the polynomial $x^{5}+5 x^{4}-79 x^{3}+64 x^{2}+60 x+144$. What is $r_{1}^{2}+\cdots+r_{5}^{2}$?

4 Find all pairs of real numbers (a, b) so that there exists a polynomial $P(x)$ with real coefficients and $P(P(x))=x^{4}-8 x^{3}+a x^{2}+b x+40$.

5 Find the greatest integer less than the number

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{1000000}}
$$

6 Suppose that $P(x)$ is a polynomial with the property that there exists another polynomial $Q(x)$ to satisfy $P(x) Q(x)=P\left(x^{2}\right) . P(x)$ and $Q(x)$ may have complex coefficients. If $P(x)$ is a quintic with distinct complex roots r_{1}, \ldots, r_{5}, find all possible values of $\left|r_{1}\right|+\cdots+\left|r_{5}\right|$.
$7 \quad$ Find one complex value of x that satisfies the equation $\sqrt{3} x^{7}+x^{4}+2=0$.
8 The Lucas numbers L_{n} are defined recursively as follows: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. Let $r=0.21347 \ldots$, whose digits form the pattern of the Lucas numbers. When the numbers have multiple digits, they will "overlap," so $r=0.2134830 \ldots$, not $0.213471118 \ldots$. Express r as a rational number $\frac{p}{q}$, where p and q are relatively prime.

9 The curve $y=x^{4}+2 x^{3}-11 x^{2}-13 x+35$ has a bitangent (a line tangent to the curve at two points). What is the equation of the bitangent?

10 If x, y, z are real numbers and

$$
\begin{array}{r}
2 x+y+z \leq 66 \\
x+2 y+z \leq 60 \\
x+y+2 z \leq 70 \\
x+2 y+3 z \leq 110 \\
3 x+y+2 z \leq 98 \\
2 x+3 y+z \leq 89
\end{array}
$$

What is the maximum possible value of $x+y+z$?

