

AoPS Community

2006 Princeton University Math Competition

Princeton University Math Competition 2006

www.artofproblemsolving.com/community/c4231 by hshiems

1	Given that $x^2 + 5x + 6 = 20$, find the value of $3x^2 + 15x + 17$.
2	Express $\sqrt{7+4\sqrt{3}} + \sqrt{7-4\sqrt{3}}$ in the simplest possible form.
3	Let r_1, \ldots, r_5 be the roots of the polynomial $x^5 + 5x^4 - 79x^3 + 64x^2 + 60x + 144$. What is $r_1^2 + \cdots + r_5^2$?
4	Find all pairs of real numbers (a, b) so that there exists a polynomial $P(x)$ with real coefficients and $P(P(x)) = x^4 - 8x^3 + ax^2 + bx + 40$.
5	Find the greatest integer less than the number
	$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{1000000}}$
6	Suppose that $P(x)$ is a polynomial with the property that there exists another polynomial $Q(x)$ to satisfy $P(x)Q(x) = P(x^2)$. $P(x)$ and $Q(x)$ may have complex coefficients. If $P(x)$ is a quintic with distinct complex roots r_1, \ldots, r_5 , find all possible values of $ r_1 + \cdots + r_5 $.
7	Find one complex value of x that satisfies the equation $\sqrt{3}x^7 + x^4 + 2 = 0$.
8	The Lucas numbers L_n are defined recursively as follows: $L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$. Let $r = 0.21347$, whose digits form the pattern of the Lucas numbers. When the numbers have multiple digits, they will "overlap," so $r = 0.2134830$, not 0.213471118 Express r as a rational number $\frac{p}{q}$, where p and q are relatively prime.
9	The curve $y = x^4 + 2x^3 - 11x^2 - 13x + 35$ has a bitangent (a line tangent to the curve at two points). What is the equation of the bitangent?
10	If x, y, z are real numbers and

2006 Princeton University Math Competition

$$2x + y + z \le 66$$
$$x + 2y + z \le 60$$
$$x + y + 2z \le 70$$
$$x + 2y + 3z \le 110$$
$$3x + y + 2z \le 98$$
$$2x + 3y + z \le 89$$

What is the maximum possible value of x + y + z?

AOPSOnline AOPSAcademy AOPS