AoPS Community

Math Prize For Girls Problems 2011

www.artofproblemsolving.com/community/c4240
by Ravi B

1 If m and n are integers such that $3 m+4 n=100$, what is the smallest possible value of $|m-n|$?

2 Express $\sqrt{2+\sqrt{3}}$ in the form $\frac{a+\sqrt{b}}{\sqrt{c}}$, where a is a positive integer and b and c are square-free positive integers.

3 The figure below shows a triangle $A B C$ with a semicircle on each of its three sides.

If $A B=20, A C=21$, and $B C=29$, what is the area of the shaded region?
4 If $x>10$, what is the greatest possible value of the expression

$$
(\log x)^{\log \log \log x}-(\log \log x)^{\log \log x} ?
$$

All the logarithms are base 10.
5 Let $\triangle A B C$ be a triangle with $A B=3, B C=4$, and $A C=5$. Let I be the center of the circle inscribed in $\triangle A B C$. What is the product of $A I, B I$, and $C I$?

6 Two circles each have radius 1 . No point is inside both circles. The circles are contained in a square. What is the area of the smallest such square?

7 If z is a complex number such that

$$
z+z^{-1}=\sqrt{3}
$$

what is the value of

$$
z^{2010}+z^{-2010} ?
$$

8 In the figure below, points A, B, and C are distance 6 from each other. Say that a point X is reachable if there is a path (not necessarily straight) connecting A and X of length at most 8 that does not intersect the interior of $\overline{B C}$. (Both X and the path must lie on the plane containing A, B, and C.) Let R be the set of reachable points. What is the area of R ?

9 Let $A B C$ be a triangle. Let D be the midpoint of $\overline{B C}$, let E be the midpoint of $\overline{A D}$, and let F be the midpoint of $\overline{B E}$. Let G be the point where the lines $A B$ and $C F$ intersect. What is the value of $\frac{A G}{A B}$?

10 There are real numbers a and b such that for every positive number x, we have the identity

$$
\tan ^{-1}\left(\frac{1}{x}-\frac{x}{8}\right)+\tan ^{-1}(a x)+\tan ^{-1}(b x)=\frac{\pi}{2} .
$$

(Throughout this equation, $\tan ^{-1}$ means the inverse tangent function, sometimes written arctan.) What is the value of $a^{2}+b^{2}$?

11 The sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies the recurrence equation

$$
a_{n}=2 a_{n-1}-2 a_{n-2}+a_{n-3}
$$

for every integer $n \geq 3$. If $a_{20}=1, a_{25}=10$, and $a_{30}=100$, what is the value of a_{1331} ?
12 If x is a real number, let $\lfloor x\rfloor$ be the greatest integer that is less than or equal to x. If n is a positive integer, let $S(n)$ be defined by

$$
S(n)=\left\lfloor\frac{n}{\left.10^{\lfloor\log n\rfloor}\right\rfloor}\right\rfloor+10\left(n-10^{\lfloor\log n\rfloor} \cdot\left\lfloor\frac{n}{10^{\lfloor\log n\rfloor}}\right\rfloor\right) .
$$

(All the logarithms are base 10.) How many integers n from 1 to 2011 (inclusive) satisfy $S(S(n))=$ n ?

13 The number $104,060,465$ is divisible by a five-digit prime number. What is that prime number?

AoPS Community

14 If $0 \leq p \leq 1$ and $0 \leq q \leq 1$, define $F(p, q)$ by

$$
F(p, q)=-2 p q+3 p(1-q)+3(1-p) q-4(1-p)(1-q) .
$$

Define $G(p)$ to be the maximum of $F(p, q)$ over all q (in the interval $0 \leq q \leq 1$). What is the value of p (in the interval $0 \leq p \leq 1$) that minimizes $G(p)$?

15 The game of backgammon has a "doubling" cube, which is like a standard 6-faced die except that its faces are inscribed with the numbers $2,4,8,16,32$, and 64 , respectively. After rolling the doubling cube four times at random, we let a be the value of the first roll, b be the value of the second roll, c be the value of the third roll, and d be the value of the fourth roll. What is the probability that $\frac{a+b}{c+d}$ is the average of $\frac{a}{c}$ and $\frac{b}{d}$?

16 Let N be the number of ordered pairs of integers (x, y) such that

$$
4 x^{2}+9 y^{2} \leq 1000000000
$$

Let a be the first digit of N (from the left) and let b be the second digit of N. What is the value of $10 a+b$?

17 There is a polynomial P such that for every real number x,

$$
x^{512}+x^{256}+1=\left(x^{2}+x+1\right) P(x) .
$$

When P is written in standard polynomial form, how many of its coefficients are nonzero?
18 The polynomial P is a quadratic with integer coefficients. For every positive integer n, the integers $P(n)$ and $P(P(n))$ are relatively prime to n. If $P(3)=89$, what is the value of $P(10)$?

19 If $-1<x<1$ and $-1<y<1$, define the "relativistic sum" $x \oplus y$ to be

$$
x \oplus y=\frac{x+y}{1+x y} .
$$

The operation \oplus is commutative and associative. Let v be the number

$$
v=\frac{\sqrt[7]{17}-1}{\sqrt[7]{17}+1}
$$

What is the value of $v \oplus v ?$
(In this expression, \oplus appears 13 times.)
20 Let $A B C$ be an equilateral triangle with each side of length 1 . Let X be a point chosen uniformly at random on side $\overline{A B}$. Let Y be a point chosen uniformly at random on side $\overline{A C}$. (Points X and Y are chosen independently.) Let p be the probability that the distance $X Y$ is at most $\frac{1}{\sqrt[4]{3}}$. What is the value of $900 p$, rounded to the nearest integer?

